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1. Introduction 
 

In previous publications [1,7] the author described the base 

rivalry in monotonous DNA sequences and their effect on the 

DNA repair mechanism.  

According to this theory, many base building blocks compete 

for the occupancy of the newly released base site in the 

replication of monotonous DNA sequences in the elongation 

phase. This gives them more and more kinetic energy from 

replication position k to next position. Thus, there is a 

probability that a tautomeric base pair is formed behind the 

end of the monotonic sequence because of the tunneling effect. 

After its replication a different, irreparable base pair 

develops from the tautomeric base pair, when the rivalry - 

energy leads to a very strong hydrogen bond. This happens, 

however, by chance. In the following, we will describe the 3 

phenomena: The tunnel probability (section 2), the probability 

for coming up of a high – energy – base building block 

(Elitist, section 3),and the combination of both phenomena 

(section 4). The result of these calculations is the equation 

(28). It is remarkable that follows from these calculations 

that the length of the monotonous sequences, and also the 

length of DNA  increases itself in the course of evolution 

(section 5). (Read up all detailed computations in [7].) 

 

2. Tunnel processes in biological hydrogen bonds 

The rivalry energy in accord with the formula  

Tk = k x 0.975 x 10-12 – 5.9086 x 10-10 x 1/   erg             = 1.11529       = cell viscosity   

    (1)                                                    

arises [1],[7] While the energy in the quantum mechanic energy level n = 
1 is -13,656 eV (ground state energy), the donor of the hydrogen bond 

receives because of base rivalry an energy which is not only over the 

energy level n = 2  

(-3,414 eV), but extends into the potential field of hydrogen bond and thus 

provokes a tunnel passage.  
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2.1. The tunnel probability  

How large is the probability of the tunnel passage of a proton 

through the potential wall? The calculation of the number of 

the protons passing through the potential wall in biological 

hydrogen bonds has been carried out for the first time by  

P. Ö. Löwdin [2], the calculation is carried out down to the 

last detail in [3]. The result is available for the areas I, 

II and III (before, within and behind the potential wall). The 

three wave equations of the proton are 
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where h is Planck’s constant, and m is the proton mass.  

All constants in the equations 
IIIIII  ,, can be calculated [7].  

As a result, we need only the amplitude A3 of the proton wave 

that comes through the wall and the amplitude A1 of the proton 

wave approaching to the wall: 
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This is the probability of a single proton tunnelling through 

the wall. l is the width of the potential wall between the 

positions, where the tunnel energy E has its smallest level E0, 

considering that the tunnelling takes place above of this 

level. When the temperature t is taken into account, in which 

the tunnel process is provoked, the “temperature–dependent 

tunnel-probability” is

.PeP
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E

t
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

    (3) 

kB is Boltzmann’s constant. If the potential wall has the shape 

of a parabola, then  
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where U2 = peak potential of the wall and the “characteristic 

temperature” 
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U0 is the height of the wall; m is the proton mass. For the 

size of U0, see [4], [5], [6].  
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  E = -13.656 eV + Tk 

is the energy created by base rivalry up to the replication 

position k-1 when k means the mutation position. 

 

2.2. The change in the tunnel probability due to temperature - 

and energy - change 

We now consider two different tunnel processes. The first 

operation took place at a hydrogen bond where the potential 

wall peak value was U21, and the second operation takes place 

at a hydrogen bond, where the potential wall peak value is U22. 

In the first process, the energy E1 operated on the donor at 

the temperature t1. In the second process, the energy E2 

operates on the donor at temperature t2.  

For the operations 1 and 2 apply the equations for the tunnel 

probabilities:  
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and 
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t01 = characteristic temperature of the hydrogen bond 1  

t02 = characteristic temperature of the hydrogen bond 2  

E1 = total energy of a proton before tunnel process in the operation 1 

E2 = total energy of a proton before tunnel process in the operation 2 
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With the abbreviations 
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Assuming that two consecutive tunnel operations always  

work on the same type of binding and therefore t01=t02=t0, then  

 



















SC

Btt
kP

P 1
exp

0201
1

2                            (11) 

This is the proportion of a second tunnel process probability 

to a first tunnel process probability where both processes 

take place at different energies and temperatures. In each 

case of tunnelling, a tautomeric base pair is created. After 

replication in each process a different base pair develops 
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from the tautomeric base pair which is inseparable, if a high  

rivalry energy led to an inseparable hydrogen bond. So the DNA 

repair mechanism is ineffective, and the base distribution 

changes irreparably in each of the two proceedings. 

Let us now, for the present irrespective of energies and 

temperatures examine statistically the distribution changes in 

DNA- replicons. We shall come back to the equations (6) and 

(7) later in section 4. 

 

 

 

3. The distribution of bases on the DNA during replication, 

and the chance of occurrence of high base rivalry energy  

In this section, the distribution change is examined from the 

point of view of an observer which does not know the physical 

equations (6) and (7) but only knows that a monotonous 

sequence lengthening appears sometimes during replication. The 

observer calculates the prospects of a base component to reach 

that place where the lengthening occurs, provided that the 

ticket for that place during replication is decided by drawing 

lots. 

During the replication of a certain DNA-segment, a 

distribution of all base components takes place which are 

produced in the cell onto the codogen matrix. This happens in 

accordance with the copy rule. In this distribution, some base 

components are exposed to the base rivalry (if they get to a 

monotonous sequence) but others not. Even fewer base 

components still have so much energy at the end of the base 

rivalry (that is, at the end of the monotonous sequence 

replication) that they provoke a tunnelling in the next 

replication position and can build an irreparable hydrogen 

bond because their donor energy is still over the quantum 

mechanical energy level n = 2. 

It is assumed that any given base component only accidentally 

will possess the ability to reach and to maintain this high 

energy level. However, there will be one of all base components 

produced in the cell which best joins those qualities (to 

reach and to maintain the high energy) together in itself. We 

name this base component the “elitist component”. An elitist can 
arise when base building blocks clump together and thereby receive a 

large rotational energy, but in comparison, small translational energy. 

This section lists all the favourable and all possible 

distributions within a DNA-replicon. The favourable 

distributions are those in which the elitist component 

accidentally arises there where the base rivalry works. The 

proportion of the number of the favourable distributions to 

the number of all possible distributions is the appearance 

probability of the elitist component at this place where the 

base rivalry works during the DNA – replication. 
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3.1. Enumeration of all possible distributions 

The 4 bases A, C, G, T are represented by the terms E, S, X, 

Y. E is the exchanged base, which in case of a mutation 

process will be replaced with an irreparable mutation by the 

substituting base S. X and Y are any bases which do not change 

in the distribution change. 

For the purpose of simplification, we look at only one base 

type e.g. the base type S in fig. 1. In the case of fig. 1 the 

copy – instruction requires that in the first monotonous 

sequence two identical bases S,S, in the second “monotonous” 

sequence one base S, and in the third monotonous sequence 

three identical bases S,S,S must exist. 

 

Origin base sequence: 

X S S E X Y X Y Y E S E Y E X X S S S Y Y X 

 

Split base sequence: 
 

 S S        S      S S S    

X    X  X        X X      X 

   E      E  E  E         

     Y  Y Y    Y       Y Y  

     Y  Y Y    Y       Y Y  

 
Figure 1: base sequence split into sequences of equal bases. 

 

How large is the number of possibilities to distribute itself 

as in fig. 1 (agreeing with the copy – instruction)? Because 

all S-bases belong to the same base type, each base of the one 

monotonous sequence can accidentally appear in another 

monotonous sequence of the same base type. The enumeration of 

all possible cases to distribute itself in the base type S as 

in fig. 1 results in 

60
!3!1!2

!6
  

It is important to note that the replication is an 

establishment of an unchanged copy, only that the base 

components of a large stock are distributed randomly, but 

still according to the copy rule. 

Designating the total number of the bases S as s, the total 

number of the bases E as e, the total number of the bases X 

and Y as x and y respectively, and further the number of bases 

which are located in the single monotonous sequences as 

...,,,,...,,,,...,,,,...,,, 321321321321 yyyxxxeeesss  

(in fig. 1 is 3,1,2 321  sss ), 

then the enumeration of all possible distributions agreeing to 

the copy –instruction in fig. 1 results in 
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s
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and the number of all possible distributions in a sequence 

that is different from the 1. sequence only in the fact that 
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in a box E the base number decreased by one, but in the box S 

the base number was increased by one, is   
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With both equations, the number of all accidental possible 

distributions which agree with the copy – instruction is 

written down. All these distributions can appear during 

replication. 

 

 

 

 

3.2. Enumeration of all favourable distributions, and the 

chance of occurrence of high base rivalry energy 

Now we wish to know how often an elitist component appears in 

all these r distributions within a certain monotonous 

sequence.  

We designate the number of all favourable distributions (that 

is the number of all cases in which the elitist accidentally 

appears within a monotonous sequence with the length s1) as s1 

and the number of cases in which the elitist accidentally 

appears within a monotonous sequence with the length s1+1 as 

s1+1. 

The  can be calculated as follows: From the above sequence 

one sees that in the total number of s=6 of replicating base 

components only s-1=5 are permutated, since the elitist  

should always remain in the monotonous sequence. The number of 

components in the three-digit (s1=3) monotonous sequence are 

permuted, is s1-1. The number of remaining base components which 

permute itself, and which are located somewhere in the 

replicating replicon, is s-s1=6-3=3. Thus follows for the 

number of favorable distributions at the first operation: 
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and for the second operation, because there s has increased 

itself to s+1 and also s1 has increased itself to s1+1 
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The probability that an elitist component appears in an s1-

digit monotonous sequence during replication (of whole 

repicon) is 
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are the numbers of all possible e-, x-, y- distributions and 

r1 is the number of all possible distributions. This is because 

that the convenient case (that means, +the elitist is within 

the s1-digit monotonous sequence) also can appear in each of 

the e-, x-, y-distributions. The statistical propability  that 

an elitist component appears in an (s1+1)-digit monotonous 

sequence during replication is 
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Dividing equation (12) through equation (13) results in 

1

1

2

1
1

1 e

s

s

e

r

r 



      (20) 

By inserting (17) into (19): 
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s is the total number of the substituting base type S. s1 is 

the base number in the monotonous sequence which is lengthened 

in case of mutation. depends on the length of the replicon. 

Now we have calculated the probability for a distribution, in 

which the elitist appears there where the base-rivalry energy 

becomes highest (in the monotonous sequence sss . . .). On 

condition that at the end of this monotonous sequence exists a 

tautomeric base pair then an irreparable mutation develops 

itself. 

 

4. The total probability of mutations caused by base 

rivalries in geological periods 
Now it seems to be interesting to combine both tunnel 

probability and elitist probability. 

Two possible processes can occur during replication of a 

monotonous sequence: 
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1. The elitist (for example, dGTP) comes (with the probability 

Ws1) into the monotonous sequence GGGGA.  

It is now assumed that at cell temperature t1 the cell 

viscosity is just so high that after s1=4 replication positions 

the elitist dGTP reaches the base rivalry energy Ts1 =3.818 eV.  

 

2. We consider the sequence as an example (now are again the real 

bases Cytosin,…):+ 

A

T

A

T

G

C

G

C

G

C

G

C
dirpl ..Re

  

 

The elitist is a base building block dGTP, which has obtained the 

energy Ts1 = 3.818 eV by base rivalry up to the replication position 

s1 = 4. Its total energy is 

    eVTE s 404.0414.3818.3
2

656.13
21   

if the energy required for n = 2 is taken into account. This energy 

E is sufficient to provoke a tunneling process.  

Because of its high rotation energy and because of its low 

translation energy, the elitist does not take the place of the 4. 

position but further is an independent base building block.1 However 

in the next (5.) replication position, so in the elongation phase of 

the just replicating base pair T/A, the high elitist-energy will 

provoke a tunneling process and thus the formation of the tautomeric 

base pair T*/A* and, again because of its high energy, immediately 

there after, the base A* is replaced by the elitist base G so that 

the new base pair T*/G develops. The high energy of the elitist 

causes the binding proton of T*/G to reach the quantum mechanical 

energy level n = 2, so the lower curve in figure 2 applies. This 

strong bond can not be resolved because the elitist can retain his 

acquired base rivalry energy longer than the DNA repair mechanism 

works. 

                                                   
1 The translation energy of all other  dGTP is higher than the transl. energy of the elitist and therefore, they 

occupy all positions of the monot. sequence. 
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Fig 2: Hydrogen bond energy (between one base pair) 
Upper graph: Both partners in ground state (n=1) 

Under graph: Acceptor in ground state (n=1), donor (excited by base rivalry, n=2). Graphs calculated in [7]. 

 

The subsequent replication then arises 
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Thus, the irreparable mutation has taken place. 
So is the total probability for an irreparable mutation 

(caused by base rivalry) at the end of an s1-digit monotonous 

sequence the product of tunnel-probability and of the  

probability of the one arriving elitist: 

    
11 sWP       (22) 

and then the monotonous sequence is extended to s1+1. 

In case of second mutation event (tunnel probability P2, 

elitist probability Ws1+1) is the total probability 
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and then the monotonous sequence is extented to s1+2. 

Therefore, it is 
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and from eq.(11) and from eq. (21) follows 
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Equation (25) describes the change of temperature and energy 

necessary to provoke the lengthening of a monotonous sequence 

for two positions to s1+1+1.  

Considering equation (14c) then  
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In the equation’s left side there is an entropy change 
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which relates to the characteristic temperature t0, and an  
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E1 and E2 are the energies relating to the temperatures in each 

case provoking the tunnel process 1 or 2, respectively. 

s1 is the previous length from the monotonous sequence which is 

extended by two positions. s is the previous total number of 

substituting bases. Equation (26) can be written as 

  0
1

1
ln

1

1 












s

s

s

s
kBCS

    (27)    

If there are two tunnel proceedings, where E1 = E2 = E then 
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5. Evolution physics 

It seems to be justified, these calculations to 

transfer to the theory of evolution. In the history 

of the earth are  happened many temperature changes. 

Warm and cold periods alternated. Especially the 

transition from a warm to a cold period has created 

higher forms of species. Assuming the temperature of 

a first period is t1, and in a following period the 

temperature is t2. t2<t1.  =t1-t2 is the temperature 

difference between the two periods which has caused 

the cell viscosity to increase up to x 10-3 Pa s 
and so always provokes the lengthening of a 

monotonous sequence for one position in the case of 

base rivalry [7]. 

These mutations will always lead to a change of 

distribution of DNA. So it is conceivable that in 

early warm periods only plain forms of DNA have 

existed with very short (monotonous) sequences.In 

some individuals these short (monotonous) sequences 

must have lengthened themselves through temperature 

decrease considering of equation (27a) because the 

cytoplasm viscosity has enlarged itself. Thus, with 

change from warmer down to always colder periods 
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(caused by slowly cooling of earth) the distribution 

within DNAs has changed itself, so that always more 

longer monotonous sequences have developed 

themselves.  
We want to examine this problem in more detail: 

The equation  

   0
1

1
ln

1

1

1

2

1



















s

s

s

s
k

tt

E
B



  (28)  

(calculated from eq.(27a)was derived on condition 

that every temperature reduction  enlarges the 

viscosity of the cell plasma by x 10-3 Pa s and 
too, that each such temperature reduction provokes an 

extension of an s1-digit monotonous sequence exactly 

by 1 position during replication. The base rivalry 

energy Tk thus remains constantly during every 

extension of the s1-digit monotonous sequence. 

From the eq. (28) the s can be calculated: 

 )29(
1

1

1 








s

s
s           

with  



 




 1
2

1

1

tt

E

kBe    

with kB = Boltzmann constant = 0.8631 x 10-4 eV/grad 

(The temperature t1 is entered here in Kelvin). 

It can be seen that for every t1 and  a certain s 
belongs. In particular, it can be seen that with 

decreasing cell temperature t1, the base number s 

becomes ever larger. 

As long as the cell temperature t1 does not decrease, 

the s (relevant for the size of the replication unit) 

remains the same. If the cell temperature t1 

decreases, then the equation (29) requires a larger 

value for s, and this means, if is expected a new 

irreparable extension of the monotonic sequence, a 

larger distribution quantity s, i.e. a larger 

replication unit is necessary. It follows that if the 

t1 is reduced (long enough), i.e. in a subsequent 

epoch, the replication unit must increase in order to 

provoke a new irreparable extension of the monotone 

sequence. Thus equation (29) can also be calculated 

for several processes at different temperatures 

t1,where the high temperatures of very early 

geothermal ages and the small monotonous sequence 

lengths s1 correspond to the simplest organisms. We 
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proceed by assigning certain s1 to specific cell 

temperatures t1 and using eq.(29) to determine the s. 

The calculated numbers s of the substituting bases 

prove that there are organisms that have responded to 

temperature reductions as described in our 

calculations.  

 

In the following table are calculated [from equation 

(29)]the temperature – dependent base lengths and the 

monotonous sequence lengths, as they arise in the 

different evolution epochs. 

 

0  s1 s1+1  s  t1
0C   sPa  E [eV]   n 

 
1.85  6 7  12  66   

 
1.74  8 9  21    62.3  0.319 x 10-3 0.405    2 
 
1.7  10 11  42  58.82   0.687 x 10-3 0.405    2 
 
1.7  12 13  151  55.42  1.055 x 10-3 0.405    2 
 

1.5  14 15  346  52.02   1.423 x 10-3 0.405    2 
 
1.3  16 17  436  49.02   1.792 x 10-3 0.402    2 
 

1.15  18 19  608  46.42  2.16 x 10-3 0.405     2 

 

1.025  20 21  713  44.12   2.528 x 10-3       0.404     2 

 
0.93  22 23  1101  42.07  2.896 x 10-3         0.404      2 
 
0.85  24 25  1794    40.21   3.264 x 10-3         0.403      2 

 
0.78  26 27  2532  38.51  3.632 x 10-3          0.404        2 

 

0.72  28 29  3552  36.97     4 x 10-3                   0.404      2 

  

 
    E = Ts1 – 13.656/n2                  

  

 

The first part of the equation is the base rivalry energy normalized to eV, 

the second term 
22

656.13  is the energy which after base rivalry up to position 

s1 excites the binding proton in the hydrogen bond to the n = 2 level. The 

difference is the tunnel energy, which at the position s1 + 1 provokes a 

tunneling process and thus a new distribution s1 + 1, s + 1. 

The quantum number n must be n = 2 for each mutation process. This is 

achieved because of base rivalry at s1 and t1. 

s is the number of substituting bases necessary for the elitist occurrence 

probability during an irreparable process in a replication unit 
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(= replicon); the total size is four times because of the four base types. 

By constantly enlarging a replication unit, it divides into two parts 

several times. If 18 doubles occur in the course of time, this results in 

the hom. sap. 218 x 3552 x 4 = 3.72 x 109 bp. 

It is always eVE 4.0 ,as can be seen by the substitution of the different 

cell viscosities z into the base rivalry equation (30). 

The energy level n = 2 is because the equation (28) was derived on the 

assumption that at the position where this equation holds, the energy level 

n = 2 has been reached [7]. 

We find out that s increases quite strongly when s1 is 

lengthened for only two positions. 

So statistically a two–position–lengthening of the 

monotonous sequence happens at the cell temperatures 

t1 and t1-, if are located s S-base components in the 
distribution unit. 

Such distributions, which have a smaller s1 and higher 

cell temperatures, belong to more primitive organisms 

which have smaller replication units and smaller 

lengthes of DNA. 
Since the table corresponds to the successive lowering of the ambient 

temperature on the earth, it follows from this the successive extension 

of monotonous seqences and replication units and the DNA in the course 

of earth development and cooling. 

 

6. Conclusion 

In this work, the author tried to find a mathematical 

connection between the cytoplasm temperature 

reduction and the DNA distribution change within long 

evolution periods. 

From the equation (28) it follows that in the course 

of the evolution, the gradual reduction of the 

cytoplasm temperature in the cases of base rivalry 

resulted in a strong  lengthening of monotonic 

sequences and in a strong increase of the total 

number of bases. Therefore has led to a big 

lengthening of the DNA. 

Thus, the calculations show that the very long DNAs 

of the highly organized organisms did not originate 

from Darwinian constraints,2 but only to satisfy 

equation (23), since this equation is the basis of 

the above calculations. So you just have to assume 

the validity of this equation however, it can easily 

be justified (see [8] page 10). 

 

 

                                                   
2 In any case, only 1% of all base pairs are used for protein encoding 
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