Die Physik irreparabler Mutationen

Dipl.-Phys. Dieter Drechsel

Neufassung und Korrektur einer früheren Arbeit gleichen Namens

ABSTRACT

During the cell division dynamic processes take place, the origin of which are to find in the physical

characteristics of cell components. The most important characteristics are the electrical charge and the energy of the moving base components in a viscous cytoplasm. During the emergence of the new hydrogen bonds takes place a competition of the complementary base components which are electrostatically attracted by the codogen matrix. Thus, the base components will be accelerated more and more in the course of replication, and the resulting binding energies become always larger in a monotonous sequence. We call this process "base rivalry".

It is shown that the strength of these new bindings depends on three factors: First it is dependent on the length of a monotonous sequence, second it is dependent on the viscosity of the cytoplasm, and third it is dependent on the replication speed. In the study in detail is stated, how it affects the effectiveness of the DNA repair mechanism, mutation susceptibility, and thus also affects the cancer susceptibility. This is a condition where the DNA repair mechanism fails: Because of the base rivalry, in a monotonous base sequence there is (for a short time) a high binding energy between the complementary bases from a critical sequence length upwards, and the effectiveness of the repair mechanism is strongly decreased. If a tautomeric base pair is behind the end of monotonous sequence, then an extension of the monotonous sequence is provoked so that, for example, the monotonous sequence CCCT irreparably changes itself into CCCC (see section 2.2).

The author describes in detail how the base rivalry affects on the evolution and on the mutation of viruses. The probability for the emergence of an irreparable mutation (caused by base rivalry) will be calculated. The result is (for a large number of individuals) a mathematical connection between temperature and the length of monotonous DNA - sequences which are lengthened by base rivalry. In the study, there are preferentially used physical and statistical computations and therefore is to understand as theoretical work. For the examination of this theory, two different computations are necessary:

- 1. Statistical computation: It is safe to assume that an individual base component exists (for example, dGTP) having a very large fading time in the case of excitation (preferable, owing to rotation energy after it became lumpy).
 - Such a base component is very rarely, so that it appears within a DNA-fragment either not or once at most. This is called the "elitist". If it appears within the fragment, we can compute the probability for its appearance in a certain position during replication, namely in a monotonous sequence of this fragment. The calculation of the probability must be statistically, because the replication is a distribution on the codogen matrix.
- 2. Physical computation: If the elitist (accidentially) arrives at a monotonous sequence of the DNA-fragment, it will reach the end of this monotonous sequence because of its high base rivalry energy, and now we can the tunnel probability calculate for the conversion into the tautomeric form which leads to a mutated hydrogen Bond at the end of monotonous sequence. This mutated hydrogen bond is irreparabel, if the fading time of the excited elitist higher is than the repair time of the DNA repair mechanism.

Both probabilities have to be connected for the computation of the total probability of the irreparable mutation. The result of this connection is an interesting equation between temperature and monotonous sequence length which is irreparably lengthened, and this gives rise to the speculation that this theory as well as the resulting equation may have a certain importance for the theory of evolution, and may have an importance for the dangerous virus mutations.

If several base rivalries take place in a monotonous sequence of a DNA fragment over time and with decreasing cell temperature, an extension of the fragment and thus a DNA extension is provoked at each base rivalry (section 8.1).

In the appendix [28] are supplementary remarks in order to understand the sections better. There is, too, a remark concerning the coherence between tumor development and cell - viscosity.

4

Inhaltsverzeichnis

1. Basenkonkurrenz in der Elongationsphase

1.1. Basenkonkurrenz	4
1.2. Der Einfluss der Viskosität des Zytoplasmas	7
2. Auswirkungen der Basenkonkurrenz auf tautomere Basenpaare	9
2.1. Berechnung der Bindeenergie der Wasserstoffbrückenbindung	9
2.1.1. Normierung der Wellenfunktionen $oldsymbol{\psi}^A$ und $oldsymbol{\psi}^H$	12
2.1.1.1.Wasserstoff im Grundzustand (1s)	12
2.1.1.2. Wasserstoff im angeregten Zustand (2p)	12
2.1.1.3. Akzeptor im Grundzustand	13
2.1.2. Darstellung der Energieflächen	13
2.1.3. Berechnung der Bindeenergie, wenn beide Partner sich im	
Grundzustand befinden	15
2.1.4. Berechnung der Bindeenergie, wenn sich der Akzeptor im	
Grundzustand und der Wasserstoff im angeregten Zustand 2p befindet	17
2.2. Falschpaarung durch Basenkonkurrenz bei tautomeren Basenpaaren	19
2.3. Abklingzeit der Basenkonkurrenz – Energie	20
2.4. Entstehung und Vererbung eines "Gedächtnisses"	
vorgeschädigter DNA	21
2.4.1. Entstehung	21
2.4.2. Vererbung	22
3. Auswirkung der Basenkonkurrenz auf die DNA – Struktur	22
4. Tunnelvorgänge in biologischen Wasserstoffbrückenbindungen	25
4.1. Berechnung der Tunnel – Wahrscheinlichkeit	26
4.1.1. Ab-initio-Berechnung der Tunnel -Wahrscheinlichkeit	26
4.1.2. Der Protonenstrom	32
4.1.3. Der Einfluss der Temperatur	35
4.1.4. Berechnung der Tunnel – Wahrscheinlichkeit in	
Wasserstoffbrückenbindungen bei parabelförmigem Potenzialverlauf.	35
4.1.5. Berechnung des Mindestabstandes $\delta = \left U(0) - E \right $ zwischen der	
Gesamtenergie E und dem Potenzialwall der Wasserstoffbrückenbindung	40
4.1.6. Berechnung der Größe 16/R	41

4.1.7. Die Änderung der Tunnel – Wahrscheinlichkeit durch Temperatur – und	
Energieänderung.	42
5. Zufällige Änderung der Basenverteilung der DNA während der Replikation	45
5.1. Aufzählung aller möglichen Verteilungen	45
5.2. Aufzählung aller günstigen Verteilungen und die Chance des	
Auftretens hoher Basenkonkurrenz – Energie	47
6. Die Total – Wahrscheinlichkeit der durch Basenkonkurrenzen	
verursachten Mutationen in geologischen Zeiträumen	49
7. Interpretation der Gleichungen (96) und (96a)	53
8. Evolution und Physik	54
8.1 Sukzessive Verlängerung der DNA	54
9. Mutation und Physik innerhalb kleinerer Zeiträume	57
10. Zusammenfassung	57

1. Basenkonkurrenz in der Elongationsphase

Bei der Replikation einer monotonen Sequenz bewerben sich in der Elongationsphase an jeder von der DNA – Polymerase abgetasteten Position mehrere Basenbausteine um die Besetzung der zu replizierenden Stelle (s. Bild 1). Diejenigen Basenbausteine, die in Bild 1 von der Base C_1 elektrostatisch angezogen und beschleunigt wurden, aber nicht benötigt werden, weil nur einer von ihnen eine Verbindung eingeht, werden bei der nächsten Replikations – Position weiter beschleunigt, wenn diese Position dieselbe Basenart (C) ist. Diesen Vorgang bezeichnen wir als "Basenkonkurrenz" [25].

Bei der Replikation einer DNA - Sequenz mit monotoner Basenfolge tritt der Fall ein, dass die nicht benötigten Basenbausteine durch fortdauernde Beschleunigung immer mehr kinetische Energie erhalten , die ab einer kritischen Sequenzlänge so groß wird, dass dort eine Base durch eine andere ersetzt wird, und wegen der hohen kinetischen Energie, die dort den Donor des konkurrierenden Basenbausteines auf ein höheres Energielevel setzt, steigt die Bindungsenergie zwischen den beiden geänderten Partnern kurzzeitig so stark an, dass an dieser Stelle der Reparaturmechanismus kurzzeitig abgeschaltet wird. Das führt dazu, dass eine infolge einer solchen Mutation in Replikationsrichtung verlängerte monotone Sequenz nicht repariert wird. Im konkreten Fall wird eine monotone Sequenz CCCC, die durch eine Mutation aus der Sequenz CCCT entsteht, durch den DNA – Reparatur – Mechanismus nicht repariert. Die Länge der nicht reparierbaren monotonen Sequenz ist abhängig von der Viskosität des Zytoplasmas.

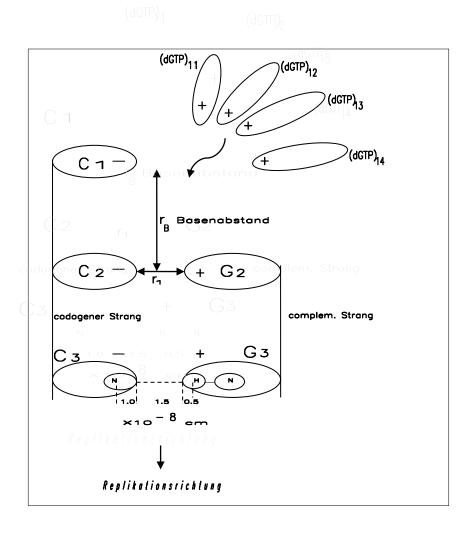
1.1. Basenkonkurrenz

In den Kapiteln 1.1. – 1.3. werden korrigierte Auszüge aus "Tumour Physics" [25] verwendet.

Bild 1 zeigt den formalisierten physikalischen Vorgang der Strang – Trennung bei einer monotonen Sequenz. Die Replikationsreaktion erfordert die Vorstufen der DNA – Bausteine, also (z. B. wie in Bild 1) das Nucleosid Desoxyguanosin-5'-triphosphat dGTP [1]. Der Nucleosidteil des dGTP, also das Desoxyguanosin, enthält die N_H - Gruppe, welche wegen der Elektronegativität des Stickstoffs eine positive Partialladung trägt und somit wie ein positiver Sensor von der negativ geladenen Base C1 der codogenen Matrize angezogen wird. Da sich offenbar in der Zelle eine durch die Biosynthese bevorratete Menge dieser (dGTP) befindet [2], werden viele von der negativ geladenen Base C1 an der Replikationsstelle angezogen. Aber *nur einer* dieser Basenbausteine (dGTP)11, (dGTP)12, (dGTP)13,.... wird nach der Strangtrennung an der frei gewordenen Basenstelle benötigt. Alle übrig bleibenden Basenbausteine werden von den nächsten frei werdenden Basenstellen einer monotonen Sequenz wieder angezogen und mit fortschreitender Replikationsgabel immer mehr beschleunigt. Befindet sich in dieser Menge ein Baustein mit großer Energie-Speicher-Fähigkeit ("Elitist"), so bleibt er gegenüber den anderen Bausteinen zurück und behält seine gespeicherte Energie bis zum Ende der monotonen Sequenz [28]. Im Folgenden wird die Energiezunahme der konkurrierenden Basenbausteine berechnet.

Wenn wir annehmen, dass sich die Basenbausteine in der Nähe der Replikationstelle der vorhergehenden Basenstelle, also im Abstand r_B vom Beginn der monotonen Sequenz aufhalten, dann hat in dem Augenblick, wo sich die 1. Base C_1 des kodogenen Stranges von ihrem

Komplementär trennt, die von nun an konkurrierenden Basenbausteine jeder die Gesamtenergie $T_0+U_0=-\frac{e_p^2}{r_B} \ (\textit{T}=\text{kinetische Energie}, \textit{U}=\text{potenzielle Energie}, \textit{e}_p=\text{Partialladung}=1/3 \ \text{der}$ Elementarladung).



$$r_1 = 1.5 \times 10^{-8} cm$$

 $r_B = 3.4 \times 10^{-8} cm$

Bild 1: Formale Darstellung der Replikation der monotonen Sequenz CCC ...

Die Basen sind als Ladungsträger dargestellt. In der unteren Basenbindung ist eine Wasserstoffbrückenbindung eingezeichnet. Aus "Tumour Physics" [25].

Erste Basenstelle:

Die konkurrierenden Basenbausteine bewegen sich wegen der elektrostatischen Anziehung auf die Base C $_1$ zu. Nur einer der konkurrierenden Basenbausteine geht eine Wasserstoffbrückenbindung mit der 1. Cytosinbase ein, und der Abstand der verbundenen Basen ist r $_1$. Unmittelbar vor der Bildung dieser ersten Wasserstoffbrückenbindung waren alle konkurrierenden (dGTP) dem elektrischen Potenzial der Base C $_1$ ausgesetzt. Dadurch haben sie die potenzielle Energie $U_1 = -e_p^{-2}/r_1$ erhalten, und nach dem Energiesatz muss gelten

$$T_1 + U_1 = T_0 + U_0 = -\frac{e_p^2}{r_R} ,$$

woraus wegen $U_1 = -e_p^2/r_1$ für die kinetische Energie der Bausteine *unmittelbar vor* der Bildung der ersten Wasserstoffbrückenbindung folgt

$$T_1 = +\frac{e_p^2}{r_1} - \frac{e_p^2}{r_B}$$

an der Stelle gegenüber der ersten Base C_1 . Sobald sich das erste Basenpaar verbunden hat, verschwindet die potenzielle Energie U_1 .

Zweite und folgende Basenstellen:

Nun trennt sich – mit fortschreitender Replikationsgabel – die zweite Cytosinbase von ihrem Komplementär. Damit entsteht – immer noch an der Stelle 1 – ein *neues* Potenzial zwischen der Base C_2 und den *an der ersten Basenstelle nicht benötigten Basenbausteinen.* Diese besitzen die kinetische Energie T_1 , und die neu aufgetauchte potenzielle Energie ist

$$U_1 = -\frac{e_p^2}{r_R} ,$$

so dass

$$T_1 + U_1 = \frac{e_p^2}{r_1} - \frac{e_p^2}{r_B} - \frac{e_p^2}{r_B}$$

ist. Die konkurrierenden Bausteine (dGTP) werden von der Base C₂ angezogen, und wenn sie dort ankommen, besitzen sie die kinetische Energie T₂. Nach dem Energiesatz muss gelten

$$T_2 + U_2 = T_1 + U_1 = \frac{e_p^2}{r_1} - 2\frac{e_p^2}{r_B}$$

Da unmittelbar vor Bildung der zweiten Wasserstoffbrückenbindung die konkurrierenden Bausteine dem elektrischen Potenzial $-e_p/r_1$ an der Base C2 ausgesetzt sind, entsteht dort die potenzielle Energie

$$U_2 = -e_p^2/r_1$$
 . Daraus folgt

$$T_2 = \frac{e_p^2}{r_1} - 2\frac{e_p^2}{r_R} + \frac{e_p^2}{r_1} = 2\frac{e_p^2}{r_1} - 2\frac{e_p^2}{r_R}$$

Sobald sich das zweite Basenpaar verbunden hat, verschwindet die potenzielle Energie U_2 wieder, und die konkurrierenden Bausteine mit der neuen Energie T_2 bleiben wieder übrig.

So kann man den Vorgang von Replikationsstelle zu Replikationsstelle fortsetzen. An der

k – ten Base hat man schließlich

$$T_k = k \left(\frac{e_p^2}{r_1} - \frac{e_p^2}{r_B} \right) \tag{1}$$

Die Berechnungen gelten für die Basenfolge CCC ... auf dem codogenen Strang. Die Gleichung (1) gilt nur, wenn k gleiche Basen C auf dem codogenen DNA – Strang aufeinander folgen. T_k bedeutet die kinetische

Energie, welche die konkurrierenden Bausteine (dGTP) an der k. Replikationsstelle durch ihren Konkurrenzlauf von Basenstelle zu Basenstelle erhalten haben.

Unter der Annahme, dass sich eine der drei Wasserstoffbrückenbindungen des Basenpaares G/C zuerst bildet, wird die Umwandlung der gesamten Bewegungsenergie in Bindungsenergie in eben dieser ersten Wasserstoffbrückenbindung stattfinden. Diese Wasserstoffbrückenbindung enthält auf ihrer Komplementärseite einen Donor. Ist die Zahl k und somit die zu übertragende Energie groß genug, dass das beteiligte Wasserstoffatom des Donors bis zur Energiestufe n = 2 erregt wird, dann ist die Bindungsenergie der neu entstehenden Wasserstoffbrückenbindung ein Vielfaches des normalen Wertes.

Die kinetische Energie aller konkurrierenden Basenbausteine treibt diese Bausteine von einer Basenstelle einer monotonen Sequenz, deren komplementärer Partner durch die Replikation frei geworden ist, zur nächsten frei werdenden Basenstelle, und dabei wird die Energie immer größer. Dadurch wird die Geschwindigkeit dieser Basenbausteine viel größer als die Geschwindigkeit, mit welcher die Replikationsgabel fortschreitet, so dass ein großer Teil der konkurrierenden (dGTP) ab der 1. Basenstelle entlang der sich trennenden DNA – Stränge weiter zum Basenpaar 2 fliegt, was sich wegen der viel kleineren Replikationsgeschwindigkeit noch lange nicht getrennt hat und somit auch noch keine Anziehungskraft auf die (dGTP) ausübt. Aber die mit sehr großer Geschwindigkeit (die Berechnung ergibt 9410 km/h, also die zehnfache Geschwindigkeit eines Düsenjets) fliegenden Basenbausteine erzeugen zwischen den beiden Basenplätzen einen Korridor, aus dem alle Zytoplasmateilchen verdrängt werden. Diejenigen Basenbausteine, welche nach der Replikation des 3.Basenpaares von der Base C3 angezogen werden, finden auf ihrem Weg dorthin keinerlei Widerstand [28].

Anders sieht die Sache aber aus auf dem Weg vom Beginn der Basenkonkurrenz bis zur Basenstelle 1, also vor der monotonen Sequenz: Dort befinden sich noch keine konkurrierenden Basenbausteine, die hohe Energie besitzen, es entsteht noch kein freier Korridor, das Zytoplasma ist noch gewissermaßen "unverdünnt", und es muss dort die Viskosität des Zytoplasmas in Rechnung gestellt werden.

1.2. Der Einfluss der Viskosität des Zytoplasmas

Vor dem Beginn der Basenkonkurrenz befinden sich die konkurrierenden Basenbausteine an der letzten Stelle vor der monotonen Sequenz, so dass das r_B auch bei dieser Replikations - Strecke genau so groß ist wie an den anderen Positionen; aber die mittlere Geschwindigkeit, mit der diese Strecke wegen der elektrostatischen Anziehung durchlaufen wird, ist wegen der Viskosität kleiner als an den folgenden Positionen. Im vorigen Abschnitt hatten wir die Energie berechnet, die in einer Replikations – Position durch elektrostatische Anziehung *bei Abwesenheit von Viskositätsreibung* entsteht:

$$T = e_p^2/r_1 - e_p^2/r_B$$

Man kann daraus die Geschwindigkeit berechnen, mit der ein Basenbaustein die Stecke r_B durchläuft:

$$v = (2T/M)^{1/2}$$

M = Masse des Bausteines. Bei Anwesenheit von Reibung durch Viskosität entsteht eine mittlere Geschwindigkeit

$$V_{\rm m} = (2T/M)^{1/2} \times 1/\epsilon$$

die also ε – mal kleiner ist als v.

Die Gegenkraft, die einem Basenbaustein (z. B. dGTP) mit dem Radius B und der *mittleren* Geschwindigkeit v_m durch das viskose Zytoplasma mit der Viskosität η entgegenwirkt, ist nach dem *Stokes*schen Gesetz¹

$$W_k = 6 \pi B v_m \eta$$

und die Energie, welche dieser Baustein auf dem Weg r_B vom Beginn der Basenkonkurrenz bis zur 1. Basenstelle verliert, ist die Verlustenergie

$$T_v = 6 \pi B r_B (2T/M)^{1/2} x \eta x 1/\epsilon$$

 $B = 1.7 \times 10^{-8} \text{ cm}$ Durchmesser des Basenbausteines

r_B =3.4 x 10⁻⁸ cm Abstand der Replikations – Positionen

$$T = e_p^2/r_1 - e_p^2/r_B = 0.957 \times 10^{-12} \text{ erg} = 0.598 \text{ eV}$$

 $M = 650 \times 10^{-24} g$ Masse des Basenbausteines

Durch Einsetzen dieser Werte in die Gleichung für T_v erhält man als Verlustenergie

$$T_v = 5.9086 \times 10^{-10} \times \eta \times 1/\epsilon$$

Man muss also die Verlust – Energie T_{ν} berücksichtigen, und man erhält anstelle der Gleichung (1)

$$T_k = k \times 0.975 \times 10^{-12} - 5.9086 \times 10^{-10} \, \eta \times 1/\epsilon \quad erg$$
 (2)

Wir nehmen nun an, dass der Basenbaustein bei der Temperatur t_1 = 37 0 C , bei der monotonen Sequenzlänge k = 28 und der Zellviskosität η = 4 x 10^{-3} Pa x s die Basenkonkurrenz – Energie T_k = 3.818 eV = 6.1088 x 10^{-12} erg erreicht und damit die quantenmechanische Energiestufe n = 2 (3.656 / 2^2 = 3.414 eV) überschreitet. (Die Differenz 3.818 – 3.414 = 0.404 eV soll einer möglichen Tunnelung vorbehalten bleiben.)

So können wir das ε aus der Gleichung (2) berechnen:

$$5.9086 \times 10^{-10} \times 4 \times 10^{-2} \times 1/\epsilon = 28 \times 0.975 \times 10^{-12} - 6.1088 \times 10^{-12}$$
 erg $\epsilon = (23.6344 \times 10^{-12}) : (27.3 \times 10^{-12} - 6.1088 \times 10^{-12}) = 23.6344 : 21.1912 = 1.11529$

 $^{\text{1}}$ Dieses gilt nur, wenn die Reynoldssche Zahl $R_e = \frac{v_{\textit{km}} \cdot B \cdot \rho}{\eta} << 2000 \text{ ist , } \rho \approx 1 \text{ Dichte des Zytoplasmas.}$

Durch Einsetzen der hier auftretenden Größen wird $R_{_{
m e}} pprox 0.1$

8

2. Auswirkungen der Basenkonkurrenz auf tautomere Basenpaare

Die Überschreitung der Energiestufe n = 2 durch Basenkonkurrenz provoziert bei tautomeren Basenpaaren während der Replikation eine irreparable Veränderung. Um dies zu erläutern, sind wellentheoretische Berechnungen der Bindungsenergien bei den Energiestufen n = 1 und n = 2 erforderlich.

2.1. Berechnung der Bindungsenergie der Wasserstoffbrückenbindung

Die Basen der DNA bilden mit ihren Komplementären folgende Wasserstoffbrückenbindungen:

Bild 2: Wasserstoffbrückenbindugen zwischen den DNA – Basen

Infolge der Elektronegativität des Stickstoffs verändert sich die Ladungsverteilung in der Gruppe N___H so, dass der Wasserstoff eine positive Partialladung erhält ("Donor") und somit bestrebt ist, ein einsames Elektron des Stickstoffs oder des Sauerstoffs (Akzeptoren) zu sich heranzuziehen. Das bedeutet aber, dass sich das Wasserstoffatom und das Stickstoffatom N bzw. O (gestrichelte Linie) ein einsames Elektron (kurz: "Patchelektron") teilen, welches man also entweder dem Wasserstoffatom oder dem Stickstoffatom (bzw. dem Sauerstoffatom) zuordnen kann. Das heißt, man hat zwei gleichberechtigte Berechnungsvarianten für die auftretenden Kräfte anzuwenden.

Erste Variante: Das Patchelektron gehört zum Akzeptoratom A. Es besitzt die Energiestufe des Akzeptoratoms. Das (eine positive Partialladung $e_p = e_0$: 3 tragende) Wasserstoffatom übt auf das negative Patchelektron pro Flächeneinheit die Kraft

$$K_1 = -\frac{e_p e_0 (\psi^A)^2}{r_H} = -\frac{1}{3} \frac{e_0^2 (\psi^A)^2}{r_H}$$
 aus.

(e₀ Elementarladung, ψ^A Wellenfunktion des Akzeptors, r_H Abstand des Patchelektrons vom Wasserstoff)

2. Variante: Das Patchelektron gehört zum Wasserstoffatom. Es besitzt die

Energiestufe des Wasserstoffatoms. Der Akzeptor ist bestrebt, das Patchelektron an sich heran zu ziehen. Dadurch entsteht am Patchelektron pro Flächeneinheit die Kraft

$$K_2 = -\frac{1}{3} \frac{e_0^2 (\psi^H)^2}{r_A}$$

(e₀ Elementarladung, ψ^H Wellenfunktion des Wasserstoffs, r_A Abstand des Patchelektrons vom Akzeptor) Die Energie, die bei einer kleinen Ortsveränderung dr_H des Patchelektrons P umgesetzt wird, ist bei der Variante 1

$$dE_1 = -\frac{1}{3} \frac{e_0^2 (\psi^A)^2}{r_H} dr_H$$

und über eine größere, durch $r_H = A_1$ und $r_H = R + A_2$ begrenzte Wegstrecke integriert

$$E_1 = -\frac{1}{3}e_0^2 \int_{A}^{R+A_2} \frac{(\psi^A)^2}{r_H} dr_H$$
 (3)

 ${\sf A_1}$ und ${\sf A_2}$ bedeuten die kleinstmöglichen Abstände des Patchelektrons vom Wasserstoff bzw. vom Akzeptor, die das Patchelektron auf seinem Wege zwischen dem Wasserstoffatom und dem Akzeptor erreichen kann. Gehört das Patchelektron zum Akzeptor (Variante 1), so ist sein Weg zum Wasserstoff begrenzt durch $r_H = A_1$ und $r_H = R + A_2$ (das Patchelektron kann vom Wasserstoff bis an dessen äußersten Atomrand ${\sf A_1}$ angezogen werden, so dass es gerade noch nicht zum Wasserstoffatom gehört).

Die Energie, die bei einer kleinen Ortsveränderung dr_A des Patchelektrons P umgesetzt wird, ist bei der Variante 2

$$dE_2 = -\frac{1}{3} \frac{e_0^2 (\psi^H)^2}{r_A} dr_A$$

und über eine größere, durch $r_A = A_2$ und $r_A = R + A_1$ begrenzte Wegstrecke integriert

$$E_2 = -\frac{1}{3}e_0^2 \int_{A_2}^{R+A_1} \frac{(\psi^H)^2}{r_A} dr_A$$
 (4)

Gehört das Patchelektron zum Wasserstoff (Variante 2), so ist sein Weg zum Akzeptor begrenzt durch $r_A=A_2$ und $r_A=R+A_1$ (das Patchelektron kann vom Akzeptor bis an dessen äußeren Atomrand A $_2$ angezogen werden, so dass es gerade noch nicht zum Akzeptoratom gehört).

Der Abstand zwischen dem Wasserstoff- und dem Akzeptoratom betrage R, und es ist

$$r_H = R - r_A$$
$$r_A = R - r_H$$

Man sieht also, dass die Begrenzungen der Variablen r_A und r_H sind:

$$R + A_{2}$$

$$r_{H} = A_{1}$$

$$R + A_{1}$$

$$r_{A} = A_{2}$$

wenn A_1 der kleinste Abstand des Patchelektrons vom H – Kern und A_2 der kleinste Abstand des Patchelektrons vom Akzeptor ist. Da beide Berechnungsvarianten gleichberechtigt sind und daher beide Energien in Erscheinung treten, muss man die Summe beider Berechnungen nehmen:

$$E = E_1 + E_2 = -\frac{e_0^2}{3} \cdot \left[\int_{A_1}^{R+A_2} \frac{(\psi^A)^2}{r_H} dr_H + \int_{A_2}^{R+A_1} \frac{(\psi^H)^2}{r_A} dr_A \right]$$
 (5)

Bei der Wasserstoffbrückenbindung N_-H ... N kommt zu dieser Energie noch die Energie E_c hinzu, welche aufgebracht werden muss, um die beiden positiv geladenen Atomkerne H und N aus dem Unendlichen bis auf die Distanz R aneinander heran zu führen. Das Coulombsche Gesetz der Abstoßung zweier positiv geladenen Kerne mit der Ladung e_0 lautet (der Akzeptor N ist ein Atomrumpf mit E Bahnelektronen und einem freien Elektron, so dass er die positive Ladung E0 besitzt):

$$K = +\frac{e_0^2}{r^2},$$

so dass
$$E_c = -\int\limits_{00}^R \frac{e_0^2}{r^2} \, dr = + \frac{e_0^2}{R}$$

und
$$E_c + E = \frac{e_0^2}{R} - \frac{1}{3}e_0^2 \cdot \left[\int_{A_1}^{R+A_2} \frac{(\psi^A)^2}{r_H} dr_H + \int_{A_2}^{R+A_1} \frac{(\psi^H)^2}{r_A} dr_A \right]$$
 (6)

ist [3]; [12]. Das Quadrat der Wellenfunktion gibt die Aufenthaltswahrscheinlichkeits – *Dichte* des Elektrons an, und so ist zu beachten, dass die Energie sich auf die Flächeneinheit 1 cm² bezieht. Da die realen Flächen, auf denen die Elektronen die Atomkerne umkreisen, viel kleiner und beim Donor und beim Akzeptor verschieden sind, müssen bei der endgültigen Berechnung in den Integralen des Donors und des Akzeptors in der Gleichung

(6) noch die realen Energieflächen $4\pi a_{0H}^2$ und $4\pi a_{0A}^2$ als zusätzliche Faktoren berücksichtigt werden (s. Abschn. 2.1.2.). Somit ergibt sich als Gesamtenergie, die in der Wasserstoffbrückenbindung enthalten ist,

$$F = \frac{e_0^2}{R} - \frac{e_0^2}{3} \cdot \left[4\pi a_{0A}^2 \int_{A_1}^{R+A_2} \frac{(\psi^A)^2}{r_H} dr_H + 4\pi a_{0H}^2 \int_{A_2}^{R+A_1} \frac{(\psi^H)^2}{r_A} dr_A \right]$$
(7)

Die Energie F ist vom Abstand R zwischen Donor und Akzeptor sowie von der Wellenfunktion ψ^A des Akzeptors und von der Wellenfunktion ψ^B des Donors abhängig. Das Minimum der Funktion F = F(R) ist die Bindungsenergie der stabilen Wasserstoffbrückenbindung.

2.1.1. Normierung der Wellenfunktionen ψ^A und ψ^H

2.1.1.1. Wasserstoff im Grundzustand (1s)

Die Wellenfunktion des Wasserstoffs im Grundzustand ist [4]

$$\psi^{H_1} = K_{H_1} \cdot e^{-\frac{r_H}{r_0}}$$

Da das durch die Wellenfunktion repräsentierte Elektron sicher irgendwo anzutreffen ist, muss als Normierungsbedingung gelten

$$\int_{0}^{4\pi} \int_{0}^{00} \psi^{2} r_{H}^{2} d\Omega dr_{H} = 1$$

$$4\pi \int_{0}^{00} \psi^{2} r_{H}^{2} dr_{H} = K_{H1}^{2} \cdot 4\pi \int_{0}^{00} e^{-\frac{2r_{H}}{r_{0}}} r_{H}^{2} dr_{H} = K_{H1}^{2} \cdot 4\pi \cdot \frac{r_{0}^{3}}{4} = 1$$

woraus folgt

$$K_{H1} = \frac{1}{\sqrt{\pi}} \cdot \left(\frac{1}{r_0}\right)^{\frac{3}{2}} = 1.470531 \times 10^{12} \, cm^{-\frac{3}{2}} \tag{8}$$

2.1.1.2. Wasserstoff im angeregten Zustand (2p)

Die Wellenfunktion des Wasserstoffs im Zustand 2p ist

$$\psi^{H_2} = K_{H2} \cdot \frac{r_H}{r_0} \cdot e^{-\frac{r_H}{2r_0}}$$

Da das durch die Wellenfunktion repräsentierte Elektron sicher irgendwo anzutreffen ist, muss als Normierungsbedingung gelten

$$\int_{0}^{4\pi} \int_{0}^{00} \psi^{2} r_{H}^{2} d\Omega dr_{H} = 1$$

$$4\pi \int_{0}^{00} \psi^{2} r_{H}^{2} dr_{H} = K_{H2}^{2} \cdot \frac{4\pi}{r_{0}^{2}} \int_{0}^{00} e^{-\frac{r_{H}}{r_{0}}} r_{H}^{4} dr_{H} = K_{H2}^{2} \cdot 96\pi \cdot r_{0}^{3} = 1$$

woraus folgt

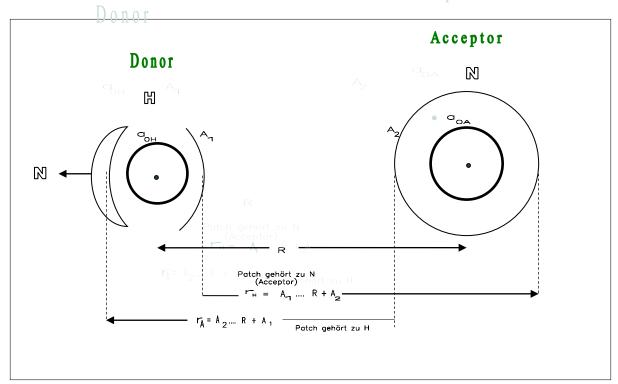
$$K_{H2} = \frac{1}{\sqrt{96\pi}} \cdot \left(\frac{1}{r_0}\right)^{\frac{3}{2}} = 0.1501 \times 10^{12} \, cm^{-\frac{3}{2}} \tag{9}$$

2.1.1.3. Akzeptor im Grundzustand

Wegen gleicher Orbitale (Wasserstoff im angeregten Zustand 2p und Akzeptor im Grundzustand 2p) sind die Wellenfunktionen für das Wasserstoffelektron im angeregten Zustand 2p und für das einsame Akzeptorelektron im Grundzustand 2p gleich; damit sind auch die Normierungskonstanten gleich:

$$K_A = K_{H2} = 0.1501 \times 10^{12} \, cm^{-\frac{3}{2}}$$

2.1.2. Darstellung der Energieflächen



Wasserstoffbrückenbindung N___H-----N:

Die Ladungsdichte - Sichel entsteht wegen der Ladungspolarisierung durch den elektronegativen Stickstoff der Donorgruppe.

Veranschaulichung der Integrationsbereiche bei Variante 1 (Patchelektron gehört zum Akzeptor) und bei Variante 2 (Patchelektron gehört zum Wasserstoff).

Während beim Donor die Größe A_1 einfach dem Radius des Wasserstoffatoms entspricht und nur noch von der Hauptquantenzahl n abhängig ist, ist es beim Akzeptor insofern etwas komplizierter, als wir diesen als einen nur mit der Elementarladung geladenen positiven Körper ansehen (Atomkern mit der Kernladungszahl Z und Z-1 Elektronen), in dessen Zentralfeld sich ein einsames Elektron bewegt. Wenn also der Akzeptor als ein felderzeugender Körper mit der "Kernladungszahl" 1 angesehen wird, so muss man dann auch den Radius dieses von dem Patchelektron umkreisten Zentralkörpers ansetzen mit

$$A_2 = \frac{n^2 h^2}{4\pi^2 m_e e_0^2}$$

Dieser (fiktive) Radius des Akzeptoratoms ist also gleich dem mit n^2 multiplizierten Bohrschen Radius, und es ergibt sich++ mit n=2 der Wert $A_2=2.112\times 10^{-8}~cm$.

Die Gleichung (5) liefert eine Energie*dichte*. Deshalb muss diese Gleichung noch mit der Fläche $4~\pi~ao^2$ multipliziert werden, das ist die Fläche, die das Elektron einnimmt, also die Fläche mit dem Radius a_0 , mit dem das Elektron den Atomkern umkreist. In der Literatur findet man die Angaben für a_0 bei Stickstoff $0.788 \times 10^{-8}~cm$ und bei Wasserstoff $0.559 \times 10^{-8}~cm$.

Da mit diesen Angaben aber offenbar die Radien der äußersten Atomhüllen gemeint sind, müssen wir hier dem Umstand Rechnung tragen, dass die größte Aufenthaltswahrscheinlichkeit des Patchelektrons nicht am äußersten Atomrand, sondern darunter liegt. Aus diesem Grund benutzen wir als Atomradien folgende Werte:

 $a_{0A}=0.3545\times 10^{-8}~cm~$ für Stickstoff, $a_{0H}=0.18\times 10^{-8}~cm~$ für Wasserstoff im Grundzustand und $a_{0H2}=0.4\times 10^{-8}~cm~$ für Wasserstoff im Zustand 2p. 2

Was geschieht nun, wenn der Donor der neu entstehenden Wasserstoffbrückenbindung an einer bestimmten Replikations- Position infolge Basenkonkurrenz ein hohes Energieniveau erreicht hat? Jetzt müssen wir die Bindeenergien berechnen und vergleichen, wie groß diese bei gleichen und bei verschiedenen Energiezuständen der beiden Basenpartner sind.

+++++++Wir berechnen die Bindungsenergie einer Wasserstoffbrückenbindung nach Gleichung (5):

$$E = -\frac{e_0^2}{3} \cdot \left[\int_{A_1}^{R+A_2} \frac{(\psi^A)^2}{r_H} dr_H + \int_{A_2}^{R+A_1} \frac{(\psi^H)^2}{r_A} dr_A \right]$$

e₀ Elementarladung

 ψ^A Wellenfunktion des Acceptorsder Wasserstoffbrückenbindung

 ψ^H Wellenfunktion des Donors der Wasserstoffbrückenbindung

R Entfernung der beiden Partner

 A_1 und A_2 Annäherungsgrenzendes einsamen Elektronsan die beiden Partner

 r_{H} , r_{A} Entfernung des einsamen Elektronsvom Donor bzw.vom Acceptor

Wir berechnen diese Gleichung einmal für den Fall, dass beide Partner (Akzeptor A und Donor H) sich im energetischen Grundzustand befinden und für den Fall, dass der Donor H sich im erregten Zustand und der Akzeptor A sich im Grundzustand befindet.

2.1.3. Berechnung der Bindeenergie, wenn beide Partner sich im Grundzustand befinden

Der Donor besitzt die Energiestufe 1s, und der Akzeptor besitzt die Energiestufe 2p. Die Wellenfunktionen des Donors und des Akzeptors lauten [4]

$$\psi^{H_1} = K_{H_1} \cdot e^{-\frac{r_H}{r_0}}$$
 Wellenfunktion des Donors
$$\psi^A = K_A \cdot \frac{r_A}{r_0} \cdot e^{-\frac{r_A}{2r_0}}$$
 Wellenfunktion des Akzeptors

 r_0 = Bohrscher Radius. K_H und K_A sind Normierungskonstanten. Aus Gl. (5) erhalten wir für die Bindungsenergie, wenn sich beide Partner im Grundzustand befinden:

² Entscheidend für die Festlegung dieser etwas willkürlich aussehenden Werte waren die damit erzielten Rechenergebnisse für die Bindungsenergien, die nach Umrechnung in Molenergien annähernd übereinstimmen mit praktischen Werten.

+

Die Indizes g und G bedeuten, dass sich beide Partner im Grundzustand befinden.

Das erste der beiden Integrale, $\, c_{\rm G1}^{}$, wird in drei Einzelintegrale zerlegt:

$$c_{G11} = R^2 e^{-\frac{R}{r_0}} \int \frac{e^{\frac{r_H}{r_0}}}{r_H} dr_H$$

$$c_{G12} = e^{-\frac{R}{r_0}} \int \frac{r_H^2 e^{\frac{r_H}{r_0}}}{r_H} dr_H$$

$$c_{G13} = -2 \operatorname{Re}^{-\frac{R}{r_0}} \int e^{\frac{r_H}{r_0}} dr_H$$

wo der Übersichtlichkeit halber die Grenzen weggelassen wurden. Die Berechnung dieser Teilintegrale ergibt, wenn man die Grenzen wieder einsetzt und für

$$R + A_{1G} = R_{1PG}$$
$$R + A_{2G} = R_{2PG}$$

setzt,

$$c_{G11} = R^2 e^{-\frac{R}{r_0}} \left\{ \sum_{n=1}^{00} \frac{1}{n \, n! \, r_0^n} \left[R_{2PG}^n - (A_{1G})^n \right] + \ln \frac{R_{2PG}}{A_{1G}} \right\}$$

$$c_{G12} = e^{-\frac{R}{r_0}} \left[e^{\frac{R_{2PG}}{r_0}} \left(r_0 R_{2PG} - r_0^2 \right) - e^{\frac{A_{1G}}{r_0}} \left(r_0 A_{1G} - r_0^2 \right) \right]$$

$$c_{G13} = -2R \cdot e^{-\frac{R}{r_0}} r_0 \left[e^{\frac{1}{r_0} R_{2PG}} - e^{\frac{1}{r_0} A_{1G}} \right]$$

Das zweite der beiden Integrale ergibt

$$c_{G2} = e^{-\frac{2R}{r_0}} \left\{ \sum_{n=1}^{00} \frac{2^n}{n \, n! \, r_0^n} \left[R_{1PG}^{\quad n} - \left(A_{2G} \right)^n \right] + \ln \frac{R_{1PG}}{A_{2G}} \right\}$$

Diese Teilintegrale lassen sich mit den Parametern $\,A_{1G}\,$, $A_{2G}\,$, r_0 als Funktionen von R berechnen, und man erhält

$$E_g = -\frac{e_0^2}{3} K_A^2 \cdot \frac{1}{r_0^2} \cdot \left(c_{G11} + c_{G12} + c_{G13} \right) - \frac{e_0^2}{3} K_H^2 \cdot c_{G2} \tag{10}$$

Bei der Gleichung (10) handelt es sich um eine Energiedichte. Man muss also die beiden Glieder der Gl.(10) noch mit den realen Oberflächen des Donor – bzw. Akzeptoratoms multiplizieren. Da das linke Glied in der Gl.

(10) die wellenmechanische Energiedichte ist, die das Akzeptoratom umsetzt, muss dieses mit $4\pi\,a_{0A}^2$ multipliziert werden. Da das rechte Glied die wellenmechanische Energiedichte ist, die das Wasserstoffatom umsetzt, muss dieses mit $4\pi\,a_{0H}^2$ multipliziert werden, um auf die wirklichen wellenmechanischen Energieumsätze zu kommen.

Bei großer Annäherung des Donors und des Akzeptors ($R < 1.8 \times 10^{-8}$ cm), also beim Entstehen der Wasserstoffbrückenbindung, vereinigen sich die Elektronenschalen des Donors und des Akzeptors zu einer einzigen, beide Kerne umschließenden Elektronenhülle, so dass noch die Coulombsche Energie zu berücksichtigen ist, die sich aus der Abstoßung der beiden Kerne ergibt und die von R abhängt. Der Energiebetrag

$$F_{G} = \frac{e_{0}^{2}}{R} - \frac{e_{0}^{2}}{3} K_{A}^{2} a_{oA}^{2} \cdot \frac{4\pi}{r_{0}^{2}} \cdot \left(c_{G11} + c_{G12} + c_{G13}\right) - \frac{e_{0}^{2}}{3} K_{H}^{2} a_{oH}^{2} \cdot 4\pi \cdot c_{G2}$$
(11)

steckt also in der Wasserstoffbrückenbindung, ist somit von R abhängig und setzt sich aus Abstoßungs- und Anziehungsenergie zusammen. Da der Kurvenverlauf $F_G(R)$ ein Minimum aufweist, tritt dort eine Energie auf, die nicht kleiner werden kann. Sie ist negativ, ist also freiwerdende Bindungsenergie, die bei der Bindung der beiden Partner entsteht, und die aufgewendet werden muss, um die beiden Partner wieder zu trennen.

Unter Verwendung der Parameter

$$K_{H1} = 1.47053 \times 10^{12} cm^{-\frac{3}{2}}$$

$$K_{A} = 0.1501 \times 10^{12} cm^{-\frac{3}{2}}$$

$$A_{1G} = 0.528 \times 10^{-8} cm$$

$$A_{2G} = 2.112 \times 10^{-8} cm$$

$$a_{0H} = 0.18 \times 10^{-8} cm$$

$$a_{0A} = 0.3545 \times 10^{-8} cm$$

ergibt sich der Kurvenverlauf $F_G(R)$ (in Bild 3 rot dargestellt).

2.1.4. Berechnung der Bindeenergie, wenn sich der Akzeptor im Grundzustand und der Wasserstoff im angeregten Zustand 2p befindet

Der Donor besitzt die Energiestufe 2p, und der Akzeptor besitzt die Energiestufe 2p. Die Wellenfunktionen des Donors und des Akzeptors lauten

$$\psi^{H_2} = K_{H_2} \cdot \frac{r_H}{r_0} \cdot e^{-\frac{r_H}{2r_0}}$$
 Wellenfunktion des Donors $\psi^A = K_A \cdot \frac{r_A}{r_0} \cdot e^{-\frac{r_A}{2r_0}}$ Wellenfunktion des Akzeptors

 r_0 = Bohrscher Radius. K_{H2} und K_A sind Normierungskonstanten. Wir erhalten für die Bindeenergie, wenn sich Donor und Akzeptor in verschiedenen Energiezuständen befinden:

$$E_{v} = -\frac{e_{0}^{2}}{3} K_{A}^{2} \cdot \frac{1}{r_{0}^{2}} \cdot \int_{A_{1V}}^{R_{2PV}} \frac{(R - r_{H})^{2} e^{-\frac{R - r_{H}}{r_{0}}}}{r_{H}} dr_{H} - \frac{e_{0}^{2}}{3} K_{H2}^{2} \cdot \frac{1}{r_{0}^{2}} \cdot \int_{A_{2V}}^{R_{1PV}} \frac{(R - r_{A})^{2} e^{-\frac{R - r_{A}}{r_{0}}}}{r_{A}} dr_{A}$$

Die Indizes v und V bedeuten, dass sich Donor und Akzeptor in verschiedenen Energiestufen befinden.

Die beiden Integrale c_{V1} und c_{V2} werden genau so berechnet wie das Integral $c_{G1} = c_{G11} + c_{G12} + c_{G13}$, nur dass hier andere Grenzen einzusetzen sind:

$$c_{V11} = R^{2} e^{-\frac{R}{r_{0}}} \left\{ \sum_{n=1}^{00} \frac{1}{n \, n! \, r_{0}^{n}} \left[R_{2PV}^{n} - (A_{1V})^{n} \right] + \ln \frac{R_{2PV}}{A_{1V}} \right\}$$

$$c_{V21} = R^{2} e^{-\frac{R}{r_{0}}} \left\{ \sum_{n=1}^{00} \frac{1}{n \, n! \, r_{0}^{n}} \left[R_{1pV}^{n} - (A_{2V})^{n} \right] + \ln \frac{R_{1pV}}{A_{2V}} \right\}$$

$$c_{V12} = e^{-\frac{R}{r_{0}}} \left[e^{\frac{R_{2PV}}{r_{0}}} \left(r_{0} R_{2PV} - r_{0}^{2} \right) - e^{\frac{A_{1V}}{r_{0}}} \left(r_{0} A_{1V} - r_{0}^{2} \right) \right]$$

$$c_{V12} = e^{-\frac{R}{r_{0}}} \left[e^{\frac{R_{1pV}}{r_{0}}} \left(r_{0} R_{1pV} - r_{0}^{2} \right) - e^{\frac{A_{2V}}{r_{0}}} \left(r_{0} A_{2V} - r_{0}^{2} \right) \right]$$

$$c_{V13} = -2R \cdot e^{-\frac{R}{r_{0}}} r_{0} \left[e^{\frac{1}{r_{0}} R_{2PV}} - e^{\frac{1}{r_{0}} A_{2V}} \right]$$

$$c_{V23} = -2R \cdot e^{-\frac{R}{r_{0}}} r_{0} \left[e^{\frac{1}{r_{0}} R_{1pV}} - e^{\frac{1}{r_{0}} A_{2V}} \right]$$

$$R_{1PV} = R + A_{1V}$$

$$R_{2PV} = R + A_{2V}$$

Diese Teilintegrale lassen sich mit den Parametern A_{1V} , A_{2V} , r_0 als Funktionen von R berechnen, und man

$$\text{erh\"{a}lt} \quad E_{_{V}} = -\frac{e_{_{0}}^2}{3} K_{_{A}}^{^{2}} \cdot \frac{1}{r_{_{0}}^2} \cdot \left(c_{_{V11}} + c_{_{V12}} + c_{_{V13}}\right) - \frac{e_{_{0}}^2}{3} K_{_{H2}}^{^{2}} \cdot \frac{1}{r_{_{0}}^2} \cdot \left(c_{_{V21}} + c_{_{V22}} + c_{_{V23}}\right) \text{ (12)}$$

Bei der Gleichung (12) handelt es sich um eine Energie*dichte*, und es gilt dasselbe, was bei der Gl. (10) bereits erörtert wurde. An die Stelle von a_{0H} tritt aber der durch den erregten Wasserstoff veränderte Wert a_{0H2} . Bei großer Annäherung der Kerne des Donors und des Akzeptors ist noch die Coulombsche Energie zu berücksichtigen, die sich aus der Abstoßung der beiden "Kerne" ergibt und die von R abhängt. Der Energiebetrag

$$F_{V} = \frac{e_{0}^{2}}{R} - \frac{e_{0}^{2}}{3} K_{A}^{2} a_{oA}^{2} \cdot \frac{4\pi}{r_{0}^{2}} \cdot \left(c_{V11} + c_{V12} + c_{V13}\right) - \frac{e_{0}^{2}}{3} K_{H2}^{2} a_{oH2}^{2} \cdot \frac{4\pi}{r_{0}^{2}} \cdot \left(c_{V21} + c_{V22} + c_{V23}\right)$$

$$\tag{13}$$

steckt also in der Wasserstoffbrückenbindung, ist somit von R abhängig und setzt sich aus Abstoßungs- und Anziehungsenergie zusammen. Da der Kurvenverlauf $F_{\scriptscriptstyle V}(R)$ ein Minimum aufweist, tritt dort eine Energie auf, die nicht kleiner werden kann. Sie ist negativ, ist also *freiwerdende Bindungsenergie*, die bei der Bindung der beiden Partner entsteht, und die aufgewendet werden muss, um die beiden Partner wieder zu trennen.

Unter Verwendung der Parameter

$$K_{H2} = 0.1501 \times 10^{12} cm^{-\frac{3}{2}}$$

$$K_{A} = 0.1501 \times 10^{12} cm^{-\frac{3}{2}}$$

$$A_{1V} = 2.112 \times 10^{-8} cm$$

$$A_{2V} = 2.112 \times 10^{-8} cm$$

$$a_{oH2} = 0.4 \times 10^{-8} cm$$

$$a_{0A} = 0.3545 \times 10^{-8} cm$$
(14)

ergibt sich der Kurvenverlauf $F_{\scriptscriptstyle V}(R)$ (in Bild 3 blau dargestellt).

Joule

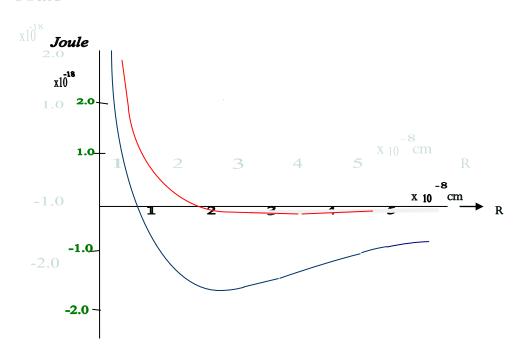


Bild 3: Bindungsenergie der Wasserstoffbrückenbindung C/G in Abhängigkeit vom Abstand R beider Partner. Rote Kurve: F_G (Beide Partner im Grundzustand n=1). Blaue Kurve: F_V (Donor: Erregter Zustand n=2), Akzeptor: Grundzustand n=1).

2.2. Falschpaarung durch Basenkonkurrenz bei tautomeren Basenpaaren

Die in den beiden Kurven dargestellten Bindungsenergien haben ihre Minima im Negativen, denn sie sind die beim Bindungsvorgang frei werdenden (negativen) Energien, wobei sich naturgemäß der Extremwert einstellt; diese Energien müssten aufgewendet werden, um die beiden Partner der Wasserstoffbrückenbindung wieder zu trennen. Es ist offensichtlich, dass durch die große negative Bindungsenergie, wie sie bei einem Elitist (welcher diese große Energie auch lange genug speichern kann) in der blauen Kurve am Minimum auftritt, eine veränderte DNA – Geometrie oder eine Falschpaarung nicht ohne weiteres aufgetrennt und repariert werden kann

.Eine Veränderung der Geometrie der Wasserstoffbrückenbindung oder eine Falschpaarung tritt in folgendem Fall ein (in einer 30-stelligen monotonen Sequenz, die im humanen Genom selten vorkommt): Durch ein Mutagen (z. B. elektromagnetische Strahlung) wird das Basenpaar T/A in das tautomere Basenpaar T*/A * verwandelt. Beim Replikationsvorgang bildet sich daraus vorzugsweise das Basenpaar T*/G. (Ebenso werden bei der Replikation die tautomeren Basenpaare A*/T*, C*/G*, G*/C* durch die Basenpaare A*/C, C*/A bzw. G*/T ersetzt [1], [5]). Hat sich also infolge einer Strahlungseinwirkung ein Sequenzabschnitt geändert von ursprünglich

entstehen, mit (durch Basenkonkurrenz) sprunghaft angestiegener Energie an der

31. Wasserstoffbrückenbindung in Replikationsrichtung von links nach rechts [Gleichung (2)]. Der DNA-Reparaturmechanismus erkennt nach dieser Replikation zwar die "ungewohnte" Geometrie des Basenpaares T*/G, kann aber die Wasserstoffbrückenbindung wegen der zu hohen Bindungsenergie an der 31. Replikationsstelle ($\eta=4\cdot10^{-3}~Pa\cdot s$ vorausgesetzt) nicht auflösen, weil dort der Donor des konkurrierenden Elitists die Energiestufe n=2 erreicht hat und somit die blaue Kurve in Bild 7 anzuwenden ist. Damit ist die durch Basenkonkurrenz verursachte Mutation irreparabel. Bei der nächsten Replikation entsteht dann die "vollkommen" falsche Sequenz

```
29. 30. 31.

C C C C C C C (cod. Strang)

: : : : : : :

G G G G G G (compl. Strang)
```

welche wieder überall eine "geordnete" Geometrie aufweist und deshalb vom DNA-Reparaturmechanismus gar nicht erst versucht wird zu reparieren. Ist die Zellviskosität sehr niedrig, so ergibt die Gleichung 2 mit z. B. $\eta = 1 \cdot 10^{-3} \ Pa \cdot s$ die Abschaltung des DNA-Reparaturmechanismus schon nach der Replikation am Ende einer 12-stelligen monotonen Sequenz, so dass aus der ursprünglichen Sequenz

```
11.12..

C C C T (cod.Strang)
: : : :
G G G A (kompl.Strang)
```

bei einer Mutation nach der 12. Basenstelle nach zwei Replikationen die "vollkommen" falsche Sequenz

```
\begin{array}{cccc} & 11.12. \\ \text{C C C C C} & (\text{cod.Strang}) \\ \vdots & \vdots & \vdots \\ \text{G G G G} & (\text{kompl.Strang}) \\ \\ \text{entsteht.} \end{array}
```

2.3. Abklingzeit der Basenkonkurrenz - Energie

Die Energie der an der k. Replikationsstelle ankommenden konkurrierenden Basenbausteine wird natürlich nicht bei allen die gleiche sein, denn die einzelnen Basenbausteine werden vor der ersten Basenstelle durch Zusammenstöße mit den Partikeln des Zytoplasmas verschieden gebremst. Also werden einzelne (dGTP) mehr, andere weniger Bewegungsenergie besitzen. Die Abklingzeit ist so groß, wie sie bei kollektiven Erregungszuständen auftritt. Für die Abklingzeit werden in der Literatur [6], [7], [8], [9], [10] auf atomarer Ebene Werte zwischen 10^{-12} und 10^{-9} s angegeben. Bei *kollektiven* Erregungszuständen, wo also nicht nur ein einzelnes Atom, sondern *alle* Atome eines oder mehrerer Nucleotide der DNA in einem elektrischen Feld angeregt wurden, sind die Abklingzeiten jedoch bedeutend größer, sogar größer als Mikrosekunden. Wir nehmen einmal an, dass sie im Mittel $60~\mu s$ betragen. Kommen z.B. am Ende einer monotonen Sequenz

20 konk+urrierende Basenbausteine mit der mittleren Abklingzeit $60 \, \mu s$ n, dann kann ein einzelner Basenbaustein von diesen $20 \, Bausteinen$

$$\frac{20}{\rho^3} \approx 1$$
 Basenbaustein (e = natürlicher Logarithmus)

die dreifache Abklingzeit 3 x 60 μ s = 1.8 x 10⁻⁴ s besitzen. Bei einer hohen Replikationgeschwindigkeit von 500 Bp/s entspricht die Zeit 1.8 x 10⁻⁴ s genau 9 % der Replikationszeit, die bis zur Replikation des nächsten Basenpaares vergeht. Nun ist aber der <u>DNA - Reparaturmechanismus</u> gerade nur in

diesen 9% der Replikationszeit wirksam. Wenn also ausgerechnet während dieser 9% ein einzelner Basenbaustein, der Elitist, mit seiner vollen Basenkonkurrenz – Energie wirkt, dann wird er den DNA - Reparaturmechanismus überwinden.

Ganz anders ist es aber, wenn die Replikationgeschwindigkeit viel kleiner (sagen wir 50 Bp/s) ist, dann ist die Replikationszeit im Verhältnis zu der Zeit (in der die Basenkonkurrenz – Energie überwiegt) so groß, dass dem DNA - Reparaturmechanismus genügend Zeit bleibt, einem veränderten Basenpaar die ursprüngliche Form wiederzugeben.

So ist eine große Replikationsgeschwindigkeit eine Ursache für die Entstehung von DNA – Fehlern und Tumoren.

Es ist anzunehmen, dass die Replikationsgeschwindigkeit im Verlaufe der Entknäuelung der DNA schwankt, so dass es durchaus sein kann, dass an manchen Replikationsstellen die Geschwindigkeit 50 Bp/s, an anderen Replikationsstellen 500 Bp/s beträgt. Man kann sich vorstellen, dass an den Stellen des DNA – Knäuels, an denen die einzelnen DNA – Segmente "schlecht verpackt" sind, also wahrscheinlich an den außen liegenden Flächen der verpackten DNA, die Entknotung der miteinander verschlungenen DNA – Solenoide *nur kurze Zeit* in Anspruch nimmt und somit die Replikationszeit zwischen 2 Replikationspositionen im Verhältnis zur Abklingzeit der Basenkonkurrenz – Energie nicht groß ist, so dass dort (an der letzten Stelle einer monotonen Sequenz) die *Abschaltung des DNA-Reparaturmechanismus* stattfindet und dadurch Mutationen nicht repariert werden. Damit hat man eine Erklärung für das Auftreten sog. "hot spots", also für das Auftreten von Stellen in der DNA, in denen Mutationen nicht repariert werden.

2.4. Entstehung und Vererbung eines "Gedächtnisses" vorgeschädigter DNA

2.4.1. Entstehung

Die Erfahrung zeigt manchmal, dass Mutagene, z. B. Bestrahlung, erst nach vielen Jahren zu Krebs führen. Um eine Erklärung für dieses Speicher- Phänomen zu finden, lenken wir unsere Aufmerksamkeit zu dem im Abschnitt 2.2. beschriebenen Erscheinungsbild der gestörten DNA – Geometrie:

Infolge eines Mutagens (z. B. elektromagnetische Strahlung) ändert sich das Basenpaar T/A in das Basenpaar T*/A*. Während der Replikation entsteht daraus vorzugsweise das Basenpaar T*/G. Der DNA-Reparaturmechanismus repariert das Paar T*/G wegen dessen gestörter Geometrie, so dass sich das Paar T*/G wieder in das Basenpaar T*/A* zurück verwandelt.

Der DNA – Mutterstrang, in dem das tautomere Basenpaar entstanden ist, überlebt jede Replikation, und der DNA-Reparaturmechanismus repariert das Paar T*/G mit der gestörten Geometrie in das "ordentliche" Paar T*/A* nach jeder Replikation.

Diese Reparatur von T*/G nach T*/A* gelingt jedoch nur, wenn die Viskosität des Zytoplasmas groß genug ist. Sobald sie zu klein wird, findet wegen der Basenkonkurrenz keine Reparatur mehr statt. Somit wirkt der Reparaturmechanismus irgendwann in einem älteren Individuum nicht mehr, und aus dem Basenpaar T*/A* entsteht das "perfekt falsche" Basenpaar C/G nach zwei Replikationen, weil der DNA – Mutterstrang noch überlebt hat. Man kann diese Gedächtnis – Funktion für mutagene Einflüsse (z. B. intensive Sonnenbestrahlung) etwas wissenschaftlicher als "genetisches Falschpaarungs – Potenzial" bezeichnen.

Es wird nun aber auch im Falle einer normalen Plasma – Viskosität (wenn auch nur in den selten vorkommenden langen 29-stelligen monotonen Sequenzen) das "perfekt falsche" Paar C/G aus dem Paar T*/A* entstehen. Somit werden mit zunehmendem Alter des Individuums

nach und nach irreparable DNA – Veränderungen sich als Alterung des Individuums darstellen und schließlich zum Tod desselben führen. Daraus kann geschlussfolgert werden, dass eine unzureichende, sehr kleine Zellviskosität die Ursache für ein schnelleres Altern sein kann.

2.4.2. Vererbung

Bei der Vererbung überlebt das "genetische Falschpaarungs – Potenzial" in den Nachkommen, weil der DNA – Mutterstrang, in welchem das tautomere Basenpaar entstanden ist, ebenfalls übergeben wird. Bei den Nachkommen kann die "perfekt falsche" Basenpaarung offensichtlich nur dann stattfinden, wenn die Zellviskosität abnimmt. So kann angenommen werden, dass das genetische Potenzial für eine gewisse Alterungs – Geschwindigkeit von den Eltern zu den Nachkommen übertragen wird.

Die Auswirkung des genetischen Falschpaarungs – Potenzials wird offenbar nicht allein durch eine herabgesetzte Zytoplasma – Viskosität, sondern auch durch eine höhere Replikationsgeschwindigkeit provoziert.

Die langen 30-stelligen monotonen Sequenzen sind im Genom eines höheren Individuums viel seltener anzutreffen als die kürzeren 21-stelligen monotonen Sequenzen. Irreparable Mutationen, die bei normaler, hoher Plasmaviskosität erst nach langen monotonen Sequenzen auftreten, sind also weitaus seltener als irreparable Mutationen, die bei sehr niedriger Plasmaviskosität schon nach 21-stelligen monotonen Sequenzen auftreten. Dadurch muss die Wahrscheinlichkeit der Krebsentstehung größer sein bei Individuen, deren Zellflüssigkeit eine zu niedrige Viskosität aufweist als bei Individuen, deren Zellflüssigkeit eine normale Viskosität besitzt. Die wenigen irreparablen Mutationen, welche bei einer normalen Viskosität im Genom auftreten und zu Änderungen der Proteinproduktion führen, dürften von dem betroffenen Individuum im Allgemeinen toleriert werden, können aber auch zur Alterungs - Geschwindigkeit beitragen.

Sicherlich wäre es nützlich, das Zytoplasma von Krebspatienten zu untersuchen, um die Frage zu beantworten, ob die Viskosität dieses Zytoplasmas signifikant kleiner ist als die Viskosität des Zytoplasmas gesunder Menschen, in der Hoffnung, Erkenntnisse zu gewinnen über eine mögliche Verkleinerung der Mutationsanfälligkeit und Krebshäufigkeit durch vorsorgliche Vergrößerung von zu kleiner Plasmaviskosität und so zu einer Verkleinerung der Replikationgeschwindigkeit..

Man weiß, dass organische Osmolyten die Viskosität des Zytoplasmas erhöhen. [29] (Literaturhinweis von R.Gilabert-Oriol, BC Cancer Research Centre). Man kann hier einen Ansatz zur Verringerung des Krebsrisikos erkennen.

3. Auswirkung der Basenkonkurrenz auf die DNA - Struktur

Aus den bisherigen Ausführungen geht hervor, dass eine durch Basenkonkurrenz verursachte Mutation an einem Basenpaar nur dann stattfinden kann, wenn bei diesem Basenpaar Tautomerität vorlag. Diese kann durch verschiedene Ursachen hervorgerufen worden sein, wie zum Beispiel durch Einwirkung elektromagnetischer Strahlen. Auf jeden Fall kann aber Tautomerität bei Basenpaaren durch Tunnelvorgänge hervorgerufen werden.

Es stellt sich nun heraus, dass bei der Basenkonkurrenz einer langen monotonen Sequenz eine Energie entsteht, die in den Tunnelbereich der Wasserstoffbrückenbindung hineinreicht, so dass schon dort die Entstehung eines tautomeren Basenpaares aus einem normalen Basenpaar provoziert wird.

Tautomerität entsteht, wenn das Proton in Bild 2 in die jeweils andere Seite der Wassserstoffbrückenbindung durch diese hindurch tunnelt.

Ist die Energie der Basenkonkurrenz so groß, dass sie in den Tunnelbereich hineinreicht, dann reicht sie auch aus, um den Donor des folgenden konkurrierenden Basenbausteines in den höheren Energiezustand zu versetzen; dadurch wird die Bindungsenergie der durch Tunnelung entstandenen neuen Partner, die bei der

Replikation des tautomeren Basenpaares entstehen, eine Zeit lang (Abklingzeit) so groß, dass der DNA – Reparaturmechanismus nicht wirken kann. Diese Problematik wird im Folgenden genauer untersucht:

Wir betrachten nur eine kleine Replikationseinheit.

Nehmen wir nun an, dass der Elternstrang dieses Fragmentes die Sequenz CCCCCTAAT enthält (s. Bild 4a). Dabei tritt an der 6. Replikations – Position wegen einer sehr kleinen Zellviskosität eine hohe Basenkonkurrenzenergie auf, die an der nächsten (jetzt noch nicht replizierten) Wasserstoffbrückenbindung A – T eine Tunnelung provoziert. Findet diese Tunnelung statt, so wird das Basenpaar A – T in das tautomere Basenpaar A* - T* verwandelt (s. Bild 4b).

Kommt nun die Replikationsgabel an der nächsten Position, also an dem Basenpaar A*-T* an, so entsteht wegen der hohen Energie eines Elitists dGTP das Basenpaar G – T*. Die große Rotationsenergie des dGTP wird bei der Entstehung der Bindung G – T* in große Bindungsenergie umgewandelt [28]. Deshalb kann diese Bindung nicht durch den DNA-Reparaturmechanismus repariert werden (s. Bild 4c). Während der übernächsten Replikation entsteht dann daraus das "perfekt falsche" Basenpaar G – C. So entsteht eine irreparable Mutation, und die monotone Sequenz verlängert sich um eine Stelle. Da ein Basenbaustein nur durch Zufall die hohe Energie erreichen kann, hängt die Wahrscheinlichkeit dieses Vorganges davon ab, wie oft ein bestimmter Baustein während der Basenverteilung in der Replikation in eine Konkurrenzsituation geraten kann. Hier tritt also das Problem der Verteilungs – Wahrscheinlichkeit auf (s. Abschnitt 5).

Es ist nun interessant, beides zu verbinden: 1. die Wahrscheinlichkeit des Tunnelvorganges, der das tautomere Basenpaar (A*-T* in Bild 4b) erzeugt, 2. Die Entstehungswahrscheinlichkeit einer Basenverteilung, die während der Replikation zu einer hohen Basenkonkurrenz – Energie führt. Dies wird in Abschnitt 6 behandelt.

Im Folgenden berechnen wir nacheinander die Tunnel – Wahrscheinlichkeit (Abschnitt 4) und die Verteilungs – Wahrscheinlichkeit (Abschnitt 5).

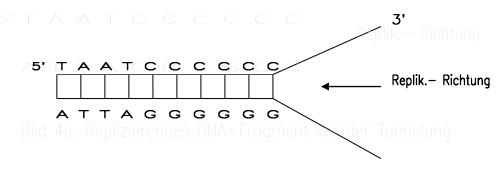


Bild 4a: Replizierendes DNA-Fragment vor der Tunnelung

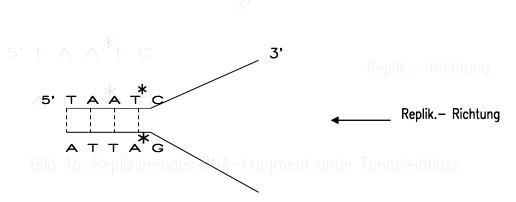


Bild 4b: Replizierendes DNA-Fragment unter Tunneleinfluss

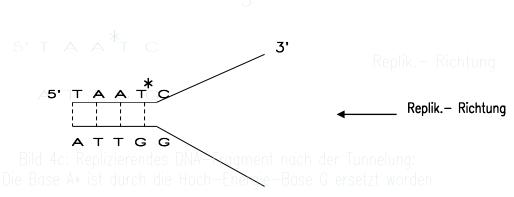


Bild 4c: Replizierendes DNA-Fragment nach der Tunnelung: Die Base A* ist durch die Hoch-Energie-Base G ersetzt worden

4. Tunnelvorgänge in biologischen Wasserstoffbrückenbindungen

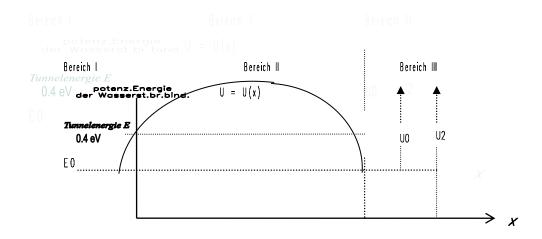
Bild 5 zeigt die beteiligten Energien, die Energie des Donors (des für die Tunnelung disponierten Protons) und die potenzielle Energie des Potenzialwalles in einer Wasserstoffbrückenbindung. Die Energie E, die zur Provokation eines Tunnelvorganges erforderlich ist, setzt sich zusammen aus der Energie des Grundzustandes

-13.656 / 2^2 eV und der Basenkonkurrenz – Energie T_k, die in Bild 4b bis zur Replikationsstufe 6 entsteht. Aus diesem Grunde ist die Länge der neuen monotonen Sequenz eine Position größer als die Position k, wo die Basenkonkurrenz – Energie in Übereinstimmung mit der Formel (2).

$$T_k = (k \times 0.975 \times 10^{-12} - 5.9086 \times 10^{-10} \eta \times 1/\epsilon) \times 10^{12} / 1.6$$
 eV

ist.

Bild 5: Tunnelenergie des Donors der Wasserstoffbrückenbindung und der Potentialwall der Wasserstoffbrückenbindung



4.1. Berechnung der Tunnel - Wahrscheinlichkeit

Wie groß ist die Wahrscheinlichkeit des Tunneldurchgangs eines Protons durch einen Potenzialwall)?

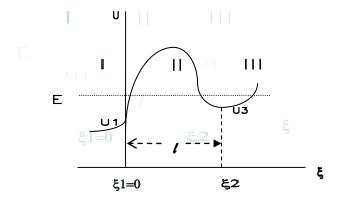


Bild 6: Allgemeiner Potenzialverlauf

4.1.1. Ab-initio-Berechnung der Tunnel -Wahrscheinlichkeit

Zur Berechnung der Tunnel – Wahrscheinlichkeit ist es zunächst notwendig, die Amplituden der Wellenfunktion des tunnelnden Protons in den Bereichen I, II und III zu bestimmen. Dafür brauchen wir die Schrödingergleichung. [5], [13]

Es muss, wie noch zu beweisen sein wird (Abschnitt 4.1.5.), gelten

$$\delta = \left| U - E \right| \gg \frac{1}{2} \sqrt[3]{\frac{\eta^2}{m} \left| \frac{dU}{d\xi} \right|^2} \tag{64}$$

Dass dieses am Ende des Bereiches I , also an der Protonen – Eintritts – Stelle, hinreichend erfüllt ist, kann man mit Hilfe eines Potenzialverlaufs (s. Abschn. 4.1.4.) nachprüfen. Hat man ein $E-U=\delta$, was mit (64) konform geht, so kann man dieses in die Schrödingersche "Amplitudengleichung"

$$\frac{d^2\psi(\xi)}{d\xi^2} + \frac{8\pi^2 m}{h^2} E \frac{E - U(\xi)}{E} \psi(\xi) = 0 \tag{15}$$

einsetzen. Für die weitere Rechnung machen wir nun eine Voraussetzung: Wir setzen voraus, dass die Gesamtenergie E des Protons nicht unterhalb der rechten Senke des Potenzialverlaufs liegen soll (strichpunktierte Linie).

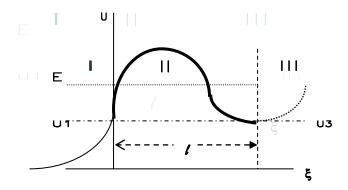


Bild 6a: Potenzialverlauf nur oberhalb der rechten Senke

Diese Voraussetzung machen wir aus dem anschaulichen Grund, dass wir den Tunnel – Durchgang des Protons durch einen richtigen (nicht nach einer Seite offenen) Potenzialwall untersuchen wollen. Wir schneiden also den Potenzialverlauf unterhalb der rechten Senke ab; das bedeutet, dass der gesamte Potenzialverlauf in den Bereichen I und III nicht interessiert. Für die Bestimmung der Wellenfunktion ψ , welche die Gleichung (15) befriedigt, genügt nur die Bedingung, dass die Ungleichung (64) unmittelbar vor der Protonen – Eintritts – Stelle in den Bereich II, aber noch in dem Bereich I, hinreichend gut erfüllt ist. Das E sei dort also immer größer als U. Das Potenzial U_1 interessiert nur an der linken Grenze des Bereiches II, und das Potenzial U_3 interessiert nur an der rechten Grenze des Bereiches II.

Setzt man
$$k_0^2 = \frac{8\pi^2 mE}{h^2}$$
 (16)

$$n^2 = \frac{E - U(\xi)}{E} \tag{17}$$

so wird

$$\psi'' + k_0^2 n^2 \psi = 0 \tag{18}$$

Im Bereich I ist an der Grenze zum Bereich II $n_1^2 = \frac{E - U_1}{E}$,

im Bereich III ist an der Grenze zum Bereich II $n_3^2 = \frac{E - U_3}{E}$

An den Stellen I und III genügt

im Bereich I die Gleichung

$$\psi_{I}(\xi) = A_{1}e^{ik_{0}n_{1}\xi} + B_{1}e^{-ik_{0}n_{1}\xi} \tag{19}$$

und im Bereich III die Gleichung

$$\psi_{III}(\xi) = A_3 e^{ik_0 n_3 \xi} + B_4 e^{-ik_0 n_3 \xi} \tag{20}$$

der Schrödingergleichung (15).

In dem "klassisch nicht erlaubten" Bereich verwenden wir die ort – und zeitabhängige Schrödingergleichung [11], [12], [13] :

$$\frac{\eta^2}{2m} \frac{\partial^2 \psi(\xi, \tau)}{\partial \xi^2} + \eta i \frac{\partial \psi(\xi, \tau)}{\partial \tau} - U \psi(\xi, \tau) = 0 \quad (\eta = \frac{h}{2\pi})$$
 (21)

Die Wellengleichung der Materiewelle des Protons³

$$\psi(\xi,\tau) = e^{\frac{i}{\eta}S(\xi,\tau)} \tag{22}$$

mit

$$S(\xi,\tau) = \sigma(\xi) - E \cdot \tau \tag{23}$$

$$\sigma(\xi) = p \cdot \xi - \theta \tag{24}$$

$$p^2 = 2m(E - U) \tag{25}$$

ist eine Lösung dieser eindimensionalen Schrödingergleichung, wenn man nur akzeptiert, dass die Gleichung

$$-\frac{\partial S}{\partial \tau} = \left(\frac{\partial S}{\partial \xi}\right)^2 \cdot \frac{1}{2m} + U - \frac{i\eta}{2m} \cdot \frac{\partial^2 S}{\partial \xi^2}$$
 (26)

gültig ist; denn diese Gleichung (26) ergibt sich, wenn man die Wellengleichung (22) in die Schrödingergleichung (21) einsetzt

Vergleicht man diese Gleichung mit der Hamilton – Jacobischen Differenzialgleichung der klassischen Mechanik

$$-\frac{\partial S_0}{\partial t} = \frac{\left(\nabla S_0\right)^2}{2m} + U$$

so sieht man, dass der Unterschied nur in dem Term

$$-\frac{i\eta}{2m}\frac{\partial^2 S}{\partial \xi^2}$$

besteht. Würde man in der Gleichung (26) diesen Term vernachlässigen, so würde das den Übergang von der Quantenmechanik zur klassischen Mechanik bedeuten. Das ist aber nur gerechtfertigt, wenn dieser Term hinreichend klein gegenüber den anderen Termen der Gleichung (26) ist. Daraus folgt:

 $^{^3}$ Der griech. Buchstabe σ hat hier eine andere Bedeutung als derselbe im Abschnitt 5.

$$\left(\frac{\partial S}{\partial \xi}\right)^2 >> \eta \frac{\partial^2 S}{\partial \xi^2}$$

Wegen

$$p = \frac{\partial S}{\partial \xi} = \pm \sqrt{2m(E - U[\xi])} = \pm \eta k(\xi)$$

folgt somit

$$p^{3} >> m\eta \left| \frac{dU}{d\xi} \right| \tag{27}$$

als Bedingung für die klassische Näherung.

Aus (23) folgt

$$\frac{\partial S}{\partial \tau} = -E, \quad \frac{\partial S}{\partial \xi} = \frac{\partial \sigma}{\partial \xi}$$

und somit aus (26)

$$E = \left(\frac{\partial \sigma}{\partial \xi}\right)^{2} \cdot \frac{1}{2m} + U - \frac{i\eta}{2m} \cdot \frac{\partial^{2} \sigma}{\partial \xi^{2}}$$
 (28)

Gleichung (28) umgeformt ergibt:

$$\left(\frac{\partial \sigma}{\partial \xi}\right)^{2} + 2m(U - E) + \frac{\eta}{i} \cdot \frac{\partial^{2} \sigma}{\partial \xi^{2}} = 0$$
 (29)

Zur Lösung dieser Gleichung macht man den Ansatz (WKB – Methode nach Wenzel, Kramers, Brillouin)

$$\sigma = \sigma_0 + \frac{\eta}{i}\sigma_1 + \left(\frac{\eta}{i}\right)^2\sigma_2 + \dots$$
 (30)

Hier werden σ' und σ'' (Strich bedeutet Ableitung nach ξ) ausgerechnet und in die Gleichung (29) eingesetzt. Die Koeffizienten gleicher Potenzen von $\frac{\eta}{i}$ müssen jeder für sich null werden. So erhält man das Gleichungssystem

$$\left(\frac{d\sigma_0}{d\xi}\right)^2 + 2m(U - E) = 0$$

$$\frac{d\sigma_1}{d\xi} \frac{d\sigma_0}{d\xi} + \frac{1}{2} \frac{d^2\sigma_0}{d\xi^2} = 0$$

$$\left(\frac{d\sigma_1}{d\xi}\right)^2 + 2\frac{d\sigma_0}{d\xi} \frac{d\sigma_2}{d\xi} + \frac{d^2\sigma_1}{d\xi^2} = 0$$
(30a)

Aus der ersten Gleichung kann σ_0 , aus der zweiten Gleichung σ_1 usw. berechnet werden, so dass sich folgende Gleichungen ergeben:

$$(\sigma_0')^2 = (p[\xi])^2$$

$$2\sigma_1' = -\frac{\sigma_0''}{\sigma_0'}$$

$$2\sigma_2' = -\frac{\sigma_1'' + (\sigma_1')^2}{\sigma_0'}$$

$$usw.$$
(31)

Setzt man
$$k(\xi) = \frac{1}{\eta} \sqrt{2m(E-U)} = \frac{1}{\eta} p(\xi)$$
, so ergibt sich aus (31)
$$\sigma_0 = \eta \int k(\xi) dx \tag{32}$$

$$\sigma_1 = \int \sigma_1' d\xi = -\frac{1}{2} \int \frac{\sigma_0''}{\sigma_0'} d\xi = \frac{1}{2} \int \frac{mU'}{p^2} d\xi = \frac{m}{2} \int \frac{dU}{p^2} = -\frac{m}{2} \int \frac{p}{m} \frac{dp}{p^2} = -\frac{1}{2} \int \frac{dp}{p} = -\ln \sqrt{p} + \ln c \tag{33}$$

 $\sigma_{\scriptscriptstyle 0}\, \mathit{und}\, \sigma_{\scriptscriptstyle 1}\,$ in GI (30) eingesetzt, ergibt

$$\sigma = \eta \int k(\xi) d\xi \pm \frac{\eta}{i} \ln \frac{c}{\sqrt{p}}$$

$$k(\xi) = \frac{1}{\eta} \sqrt{2m(E - U)}$$
(34)

und wenn man dieses in den zeitunabhängigen Teil der Gl (22) einsetzt, ergibt sich

$$\psi(\xi) = e^{\pm i \int k(\xi)d\xi + \ln\frac{c}{\sqrt{p}}} = \frac{c}{\sqrt{p}} e^{\pm i \int k(\xi)d\xi} = \frac{c_1}{\sqrt{p}} e^{+i \int k(\xi)dx} + \frac{c_2}{\sqrt{p}} e^{-i \int k(\xi)d\xi}$$
(35)

Ist die Gesamtenergie E kleiner als das Potenzial U, dann ist $k(\xi)$ imaginär. Man setzt

$$k(\xi) = i \cdot k_r(\xi) = \frac{i}{n} \sqrt{2m(U - E)}$$
(36)

 k_r ist reell. So wird aus (35) im Bereich II (E < U)

$$\psi_{II}(\xi) = \frac{\alpha}{\sqrt{k_r(\xi)}} e^{+\int_0^{\xi} k_r(\xi)d\xi} + \frac{\beta}{\sqrt{k_r(\xi)}} e^{-\int_0^{\xi} k_r(\xi)d\xi}$$
(37)

mit noch offenen Konstanten α und β .

Als Ergebnis vorstehender Berechnungen haben wir, untereinander geschrieben, für die Bereiche I, II und III die folgenden Wellenfunktionen:

$$\psi_{I}(\xi) = A_{1}e^{ik_{0}n_{1}\xi} + B_{1}e^{-ik_{0}n_{1}\xi} \tag{19}$$

$$\psi_{II}(\xi) = \frac{\alpha}{\sqrt{k_r(\xi)}} e^{+\int_0^{\xi} k_r(\xi)d\xi} + \frac{\beta}{\sqrt{k_r(\xi)}} e^{-\int_0^{\xi} k_r(\xi)d\xi}$$
(37)

$$\psi_{III}(\xi) = A_3 e^{ik_0 n_3 \xi} \tag{20}$$

Nach GI (36) ist

$$k_r(\xi) = \frac{1}{\eta} \sqrt{2m(U - E)} \tag{36a}$$

Hiermit wird für das bestimmte Integral für den Bereich II (0≤x≤I) in der Gl. (37) kurz

$$K = \frac{1}{\eta} \int_{0}^{t} \sqrt{2m(U - E)} d\xi$$

geschrieben, so dass die GI (37) auch so geschrieben werden kann:

$$\psi_{II}(\xi) = \frac{\alpha}{\sqrt{k_r(\xi)}} e^{+K} + \frac{\beta}{\sqrt{k_r(\xi)}} e^{-K}$$
(38)

In GI (20) interessiert nur die rechtsläufige Welle; Daher ist $B_3 = 0$.

Wir bilden die ersten Ableitungen dieser Gleichungen und beachten, dass an den Grenzen der Bereiche I, II und II gelten muss (siehe Bild 10) :

$$\psi_{I}(0) = \psi_{II}(0)$$

$$\psi_{I}'(0) = \psi_{II}'(0)$$

$$\psi_{II}(l) = \psi_{III}(l)$$

$$\psi_{II}'(l) = \psi_{III}'(l)$$

So erhält man 4 Gleichungen für die Größen A_1 , A_3 , B_1 , α , β . Da nur 4 Gleichungen für die 5 gesuchten Konstanten zur Verfügung stehen, findet sich in den Ergebnissen für α und β noch die Unbekannte A_3 :

$$\alpha = A_3 \sqrt{k_r(l)} e^{ik_0 n_3 l - K} \left(\frac{ik_0 n_3}{k_r(l)} + \frac{1}{2} \right)$$

$$\beta = \frac{A_3}{2} \sqrt{k_r(l)} e^{ik_0 n_3 l + K} \left(1 - \frac{ik_0 n_3}{k_r(l)} \right)$$

Wenn die Größe $K=\frac{1}{\eta}\int\limits_0^l\sqrt{2m(U-E)}d\xi\;\;$ groß genug ist, wenn also die Rechnungen entsprechend der

quasiklassischen Näherung nicht in unmittelbarer Nähe von U = E ausgeführt werden, kann man die Größe β gegen die Größe α vernachlässigen, und man braucht nur die 4 Größen A_1 , A_3 , B_1 , α zu berechnen.

Als Endergebnis interessiert schließlich nur das Verhältnis der Amplitude A₃ der den Potenzialwall verlassenden Welle zu der Amplitude A₁ der in den Potenzialwall eintretenden Welle:

$$\frac{A_3}{A_1} = \frac{4e^{-K - ik_0 n_3 l}}{\left[\sqrt{k_r(l)} - \frac{ik_0 n_3}{\sqrt{k_r(l)}}\right] \cdot \left[\frac{1}{\sqrt{k_r(0)}} - \frac{\sqrt{k_r(0)}}{ik_0 n_1}\right]}$$
(39)

Zusammenfassung der Berechnungen des Abschnittes 4.1.1.: Es wurde das Verhalten der Protonen in der Umgebung einer Potenzialbarriere berechnet und die Amplituden A_1 und A_3 ermittelt, welche zur Berechnung der Protonenströme und danach für die Berechnung der Tunnel – Wahrscheinlichkeit gebraucht werden.

4.1.2. Der Protonenstrom

Nun müssen nur noch die Protonenströme durch die Bereiche I, II, und III berechnet werden [14]. Zu diesem Zwecke benutzen wir die Schrödingergleichung und deren konjugiert komplexe Form:

$$\frac{\eta^{2}}{2m} \frac{\partial^{2} \psi(x,\tau)}{\partial x^{2}} + \eta i \frac{\partial \psi(x,\tau)}{\partial \tau} - U \psi(x,\tau) = 0$$

$$\frac{\eta^{2}}{2m} \frac{\partial^{2} \psi^{*}(x,\tau)}{\partial x^{2}} - \eta i \frac{\partial \psi^{*}(x,\tau)}{\partial \tau} - U \psi^{*}(x,\tau) = 0$$

Multipliziert man die erste Gleichung mit ψ^* , die zweite mit ψ und subtrahiert danach die zweite von der ersten, so erhält man

$$\frac{\eta^2}{2m} \left(\psi * \frac{\partial^2 \psi}{\partial x^2} - \psi \frac{\partial^2 \psi *}{\partial x^2} \right) + \eta i \left(\psi * \frac{\partial \psi}{\partial \tau} + \psi \frac{\partial \psi *}{\partial \tau} \right) = 0$$

Anstelle der rechten Klammer kann man schreiben:

$$\frac{\partial w}{\partial \tau} = \partial(\psi * \psi)$$

 $w=\psi\cdot\psi^*$ ist die sog. "Wahrscheinlichkeitsdichte", und $\frac{\partial w}{\partial au}$ ist die pro Zeiteinheit sich verringernde Protonendichte in dem betreffenden Bereich. Somit erhält man

$$\frac{\eta^2}{2m} \left(\psi * \frac{\partial^2 \psi}{\partial x^2} - \psi \frac{\partial^2 \psi *}{\partial x^2} \right) + \eta i \frac{\partial w}{\partial \tau} = 0$$

Die Klammer in dieser Gleichung kann man wiederum so schreiben:

$$\frac{\partial \psi^*}{\partial x} \frac{\partial \psi}{\partial x} + \psi^* \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial \psi}{\partial x} \frac{\partial \psi^*}{\partial x} - \psi \frac{\partial^2 \psi^*}{\partial x^2} = \frac{\partial}{\partial x} (\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x})$$

Im eindimensionalen Fall gilt

$$\frac{\partial}{\partial x}(\psi * \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi *}{\partial x}) = div \left(\psi * \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi *}{\partial x}\right)$$

Also ist

$$\frac{\eta^{2}}{2mi}div\left(\psi^{*}\frac{\partial\psi}{\partial x} - \psi\frac{\partial\psi^{*}}{\partial x}\right) + \eta\frac{\partial w}{\partial \tau} = 0$$

$$\frac{\eta}{2mi}div\left(\psi^{*}\frac{\partial\psi}{\partial x} - \psi\frac{\partial\psi^{*}}{\partial x}\right) = -\frac{\partial w}{\partial \tau}$$

$$div\left[\frac{\eta}{2mi}\left(\psi^{*}\frac{\partial\psi}{\partial x} - \psi\frac{\partial\psi^{*}}{\partial x}\right)\right] = -\frac{\partial w}{\partial \tau}$$

Ersetzt man in der linken Seite dieser Gleichung das $\frac{\partial}{\partial x}$ durch den Operator ∇ und bezeichnet

$$J = \frac{\eta}{2mi} \left(\psi * \nabla \psi - \psi \nabla \psi * \right) \tag{40}$$

als den Protonenstrom, der den betrachteten Raum durchfließt, dann bedeutet die Gleichung

$$\frac{\partial w}{\partial \tau} = -divJ ,$$

dass die sich in dem *betrachteten Raum (I, II oder III)* in der Zeiteinheit verringernde Protonendichte $\frac{\partial w}{\partial \tau}$ gleich ist der Menge der durch die jeweiligen Bereiche fließenden Protonen.

Berechnet man für die Bereiche I und III die in der Klammer der Gleichung (40) stehenden Produkte, so erhält man aus den Wellenfunktionen der Bereiche I und III

$$\psi_1 = A_1 e^{ik_0 n_1 x} \qquad \qquad \psi_3 = A_3 e^{ik_0 n_3 x}$$

$$\psi_{1}\psi_{1} *' = -A_{1}^{2}ik_{0}n_{1}$$

$$\psi_{3}\psi_{3} *' = -A_{3}^{2}ik_{0}n_{3}$$

$$\psi_{1} *\psi_{1}' = A_{1}^{2}ik_{0}n_{1}$$

$$\psi_{3} *\psi_{3}' = A_{3}^{2}ik_{0}n_{3}$$

und somit aus (40)

$$J_1 = \frac{\eta}{m} A_1^2 k_0 n_1 \qquad J_3 = \frac{\eta}{m} A_3^2 k_0 n_3 \qquad (40a)$$

Demnach ist der Bruchteil des Protonenstromes, der im Bereich III von dem Protonenstrom im Bereich I übrig geblieben ist,

$$P = \frac{|J_3|}{|J_1|} = \frac{|A_3|^2}{|A_1|^2} \cdot \frac{n_3}{n_1} \tag{41}$$

und das ist die Tunnel – Wahrscheinlichkeit für ein einzelnes Proton, durch den Bereich II hindurch zu kommen.

Die Berechnung ergibt mit Hilfe der Gleichung (39)

$$P = 16e^{-2K} \cdot \frac{1}{R} \cdot \frac{n_3}{n_1} = \frac{16}{R} e^{-\frac{2}{\eta_0} \int_0^1 \sqrt{2m(U-E)} d\xi} \cdot \frac{n_3}{n_1}$$
 (45)

mit
$$R = \frac{k_r(l)k_r(0)}{k_0^2 n_1^2} + \frac{k_0^2 n_3^2}{k_r(l)k_r(0)} + \frac{k_r(l)}{k_r(0)} + \frac{k_r(0)n_3^2}{k_r(l)n_1^2}$$
(45a)

Die Integrationsgrenze / entspricht der Breite des Bereiches II.

4.1.3. Der Einfluss der Temperatur

Unter der Annahme, dass der Tunnelvorgang sehr viel später beginnt, als nach einer Energieeinwirkung auf die im Bereich I befindlichen Protonen Energiegleichgewicht eingetreten ist, gilt die Boltzmann – Verteilung [5]: Die Zahl der Protonen, welche die Energie E aufgenommen haben, ist vor dem ersten Tunnelvorgang im Bereich I

$$N_I = N_0 e^{-\frac{E}{k_B t}} \tag{46}$$

(t = Temperatur, N_0 = Protonenzahl im Bereich I vor der Energieeinwirkung, k_B = Boltzmannkonstante). Die Tunnelwahrscheinlichkeit eines Protons, das die Energie E besitzt, ist

$$P = \frac{N_{III}}{N_I} \tag{47}$$

wenn N_{III} die Zahl der im Bereich III angekommenen (getunnelten) Protonen ist. Suchen wir das Verhältnis der im Bereich III angekommenen (getunnelten) Protonen zu der *vor* der Energieeinwirkung im Bereich I vorhandenen Protonenzahl N_0 , so gilt

$$P_t = \frac{N_{III}}{N_0}$$

Pt ist die "temperaturabhängige Tunnelwahrscheinlichkeit". Wegen (47) gilt

$$N_{III} = N_I \cdot P$$

und wegen (46) und (45)

$$N_{III} = N_0 e^{-\frac{E}{k_B t}} \cdot P$$

$$P_t = e^{-\frac{E}{k_B t}} \cdot P = \frac{16}{R} \cdot e^{-\frac{E}{k_B t} - \frac{2}{\eta_0} \int_0^t \sqrt{2m(U - E)} d\xi} \cdot \frac{n_3}{n_1}$$
(48)

Das ist die Tunnel – Wahrscheinlichkeit durch einen allgemeinen Potenzialwall unter Berücksichtigung des Temperatureinflusses.

4.1.4. Berechnung der Tunnel – Wahrscheinlichkeit in Wasserstoffbrückenbindungen bei parabelförmigem Potenzialverlauf.

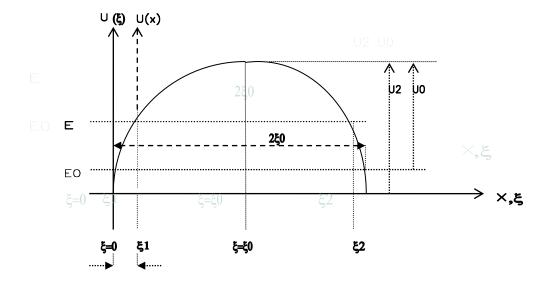


Bild 7: Potenzialverlauf zwischen Donor und Akzeptor: Der Proton – Eintritts - Ort (E=U) liegt auf der Ordinatenachse U(x).

Die Parabel in dem Koordinatensystem $\, \xi, U(\xi) \,$ hat die Gleichung

$$U(\xi) = -\frac{1}{\xi_0^2} (U_2 - E_0)(\xi - \xi_0)^2 + U_2$$
 (49)

Die Gleichung (49) beschreibe den Potenzialverlauf einer Wasserstoffbrückenbindung.

Da wir im Folgenden annehmen, dass die linke Grenze des Bereiches II (s. Bild 11) diejenige Stelle sein soll, an welcher das mit der Energie E aufgeladene Proton auf das Potenzial U=E trifft, legen wir ein zweites Koordinatensystem U(x) an, dessen Lage durch die Energie E bestimmt wird. Es wird also mit der Transformation $\xi_1=\xi-x$ dafür gesorgt, dass in dem Koordinatensystem, in welchem weiter gerechnet wird, die linke Grenze des Bereiches II, also der Proton – Eintritts- Ort, unabhängig von der Energie E auch immer am Koordinaten – Anfangspunkt x=0 liegt. Wir integrieren also nicht wie in der Gl. (45) über ξ , sondern über x:

$$\int_{0}^{l} \sqrt{U(x) - E} \, dx \tag{45b}$$

Um die neuen Integrationsgrenzen zu bestimmen, lösen wir zunächst die Gleichung (49) nach $\, \xi \,$ auf:

$$\xi = \xi_0 \pm \xi_0 \sqrt{\frac{U_2 - U(\xi)}{U_2 - E_0}} \tag{50}$$

Bei $\xi=\xi_{1,2}$ sei immer $U(\xi)\!=\!E$, also

$$\xi_1 = \xi_0 - \xi_0 \sqrt{\frac{U_2 - E}{U_2 - E_0}}$$
 , $\xi_2 = \xi_0 + \xi_0 \sqrt{\frac{U_2 - E}{U_2 - E}}$ (51)

(ξ_1 untere Grenze, ξ_2 obere Grenze)

Wir transformieren $\xi = \xi_1 + x$ und erhalten aus (49)

$$U(x) = -\frac{1}{\xi_0^2} (U_2 - E_0)(x + \xi_1 - \xi_0)^2 + U_2$$
 (52)

Nun suchen wir in diesem Koordinatensystem die Stellen $x_{1,2}$, an denen U(x) = E ist, denn das sind die neuen Integrationsgrenzen in dem Koordinatensystem x, U(x):

$$x_1 = \xi_0 - \xi_0 \sqrt{\frac{U_2 - E}{U_2 - E_0}} - \xi_1 , \quad x_2 = \xi_0 + \xi_0 \sqrt{\frac{U_2 - E}{U_2 - E_0}} - \xi_1$$
 (53)

(x₁ untere, x₂ obere Grenze)

Setzt man das ξ_1 aus Gl. (51) in die Gleichungen (52) ein, so sieht man, dass in dem verschobenen Koordinatensystem x, U(x) die untere Grenze $x_1 = 0$ und die obere Grenze

$$x_2 = 2\xi_0 \sqrt{\frac{U_2 - E}{U_2 - E_0}}$$

ist. Wir haben also mit der GI (52) eine Funktion, deren Proton – Eintritts - Ort U(x) = E bei

x =0 liegt, und wir können nun die Integration der Gleichung (45b) in den geforderten neuen Grenzen für den parabelförmigen Potenzialwall ausführen:

$$\int_{0}^{l} \sqrt{U(x) - E} \, dx = \int_{0}^{2\xi_{0}} \sqrt{\frac{U_{2} - E}{U_{2} - E_{0}}} \sqrt{-\frac{1}{\xi_{0}^{2}} \left(U_{2} - E_{0}\right) \left(x - \xi_{0} \sqrt{\frac{U_{2} - E}{U_{2} - E_{0}}}\right)^{2} + U_{2} - E} \, dx \tag{54}$$

Wir setzen

$$z = \frac{1}{\xi_0} \sqrt{U_2 - E_0} \left(x - \xi_0 \sqrt{\frac{U_2 - E}{U_2 - E_0}} \right)$$

$$b^2 = U_2 - E$$

und erhalten

$$dx = \frac{\xi_0}{\sqrt{U_2 - E_0}} dz$$

und als Integrationsgrenzen

$$z_{1,2} = \pm \sqrt{U_2 - E}$$

$$\int_{0}^{l} \sqrt{U(x) - E} \, dx = \frac{\xi_{0}}{\sqrt{U_{2} - E_{0}}} \int_{-\sqrt{U_{2} - E}}^{+\sqrt{U_{2} - E}} \sqrt{b^{2} - z^{2}} \, dz = \frac{\xi_{0}}{\sqrt{U_{2} - E_{0}}} \left[\frac{z}{2} \sqrt{b^{2} - z^{2}} + \frac{b^{2}}{2} \arcsin \frac{z}{b} \right]_{-\sqrt{U_{2} - E}}^{+\sqrt{U_{2} - E}}$$

$$= \frac{\xi_0}{\sqrt{U_2 - E_0}} (U_2 - E) \frac{\pi}{2}$$

Wird die Gesamtenergie E mit Hilfe des Bruchteils ε $\left(0 \le \varepsilon \le 1\right)$ definiert [5], so dass E variieren kann zwischen dem Maximalwert U_2 $\left(\varepsilon=0\right)$ und dem Minimalwert E_0 $\left(\varepsilon=1\right)$, dann ist

$$E = U_2 - \varepsilon U_0$$
$$U_0 = U_2 - E_0$$

 $2\xi_0$ bedeutet in dem festen Koordinatensystem U(ξ) die Breite des Potenzialwalls an der Energiestufe E_0 . Demnach erhält man

$$\int_{0}^{l} \sqrt{U(x) - E} \, dx = \frac{\xi_{0}}{\sqrt{U_{2} - E_{0}}} (U_{2} - E) \frac{\pi}{2} = \frac{\xi_{0} \varepsilon \pi}{2} \sqrt{U_{2} - E_{0}}$$

$$\frac{2 \cdot \sqrt{2m}}{\eta} \int_{0}^{l} \sqrt{U(x) - E} \, dx = \frac{2 \cdot \sqrt{2m}}{\eta} \cdot \frac{\xi_{0} \varepsilon \pi}{2} \cdot \sqrt{U_{2} - E_{0}}$$

Wegen $\eta = \frac{h}{2\pi} \quad \text{ergibt sich}$ $\frac{2 \cdot \sqrt{2m}}{n} \int_{0}^{L} \sqrt{U(x) - E} \, dx = \frac{2\xi_{0} \varepsilon \pi^{2}}{h} \cdot \sqrt{2m(U_{2} - E_{0})}$ (55)

Durch das Einsetzen der transformierten Parabelgleichung (52) in die Gleichung (54) und durch Anwendung der geforderten Integrationsgrenzen x_1 und x_2 (an denen E = U ist) ist also aus dem Integral der Gleichung (45)

$$K = \frac{1}{\eta} \int_{0}^{t} \sqrt{2m(U-E)} d\xi$$

welches für einen *allgemeinen* (beliebigen) Potenzialverlauf gilt, das innerhalb der Grenzen 0 und x₂ berechnete *Integral des parabelförmigen* Potenzialverlaufs

$$K = \frac{\pi^2 \xi_0 \varepsilon}{h} \cdot \sqrt{2m(U_2 - E_0)} = \varepsilon \cdot K_0$$

mit der Abkürzung

$$K_0 = \frac{\pi^2 \xi_0}{h} \cdot \sqrt{2m(U_2 - E_0)} \tag{56}$$

entstanden, und es ist nach (45)

$$P = \frac{16}{R} \cdot \frac{n_3}{n_1} \cdot e^{-2K}$$

Da am Beginn und am Ende des Bereiches II das Potenzial U(x) die gleiche Größe besitzt

(s. Bild 11), ist $n_1 = n_3$, und somit

$$P = \frac{16}{R}e^{-2\varepsilon K_0}$$
 (parabelförmiges Potenzial) (58)

$$P = \frac{16}{R}e^{-2K} \tag{59}$$

Die Gleichung (59) ist eigentlich die Formel für den allgemeinen Potenzialwall. Benutzt man zur Berechnung des K die Gleichung (56), so ergibt die Formel (59) die Tunnel – Wahrscheinlichkeit durch einen Potenzialwall, der die Form der Parabel (49) hat:

$$P = \frac{16}{R}e^{-2\varepsilon K_0} = \frac{16}{R}\exp\left[-2\frac{U_2 - E}{U_0}\frac{\pi^2}{2h} \cdot 2\xi_0\sqrt{2mU_0}\right] = \frac{16}{R}\exp\left[-\frac{U_2 - E}{k_B t_0}\right]$$
(60)

 $2\xi_0$ = Breite des Potentialwalls

mit der Boltzmannschen Konstante k_B und der "charakteristischen Temperatur"

$$t_0 = \frac{h}{2\xi_0 \pi^2 k_B} \sqrt{\frac{U_0}{2m}} \tag{61}$$

Mit Berücksichtigung des Temperatureinflusses in der Gleichung (48) erhalten wir schließlich

$$P_{t} = e^{-\frac{E}{k_{B}t}} \cdot P = \frac{16}{R} \cdot e^{-\frac{E}{k_{B}t}} \cdot e^{-\frac{U_{2} - E}{k_{B}t_{0}}} = \frac{16}{R} \exp \left[-\frac{U_{2} - E}{k_{B}tt_{0}} (t - t_{0}) - \frac{U_{2}}{k_{B}t} \right]$$
(62)

als Formel für die Tunnel – Wahrscheinlichkeit durch einen parabelförmigen Potenzialwall bei Einwirkung der Temperatur t .

Zusammenfassung der hier vorgestellten Rechenoperationen:

Es wirkt eine Energie E auf die Wasserstoffbrückenbindung. In der Gleichung (46) wird die Zahl N_I der Protonen berechnet, welche bei einer Temperatur t vor dem ersten Tunnelvorgang die wirkende Energie E angenommen haben im Verhältnis zu der Protonenzahl N_0 vor der Energieeinwirkung. Es ist also nur ein Teil der Protonen, welche wirklich die Energie E besitzen, und dieser Teil der Protonen unterliegt dem Tunnel – Risiko, dessen Wahrscheinlichkeit E ist. So haben wir die Gleichung (62), die sich zusammensetzt aus der Wahrscheinlichkeit

 $\frac{N_I}{N_0}$ für ein einzelnes Proton, die wirkende Energie $\it E$ zu erhalten, und der reinen Tunnel - Wahrscheinlichkeit

P. Die Energie, die auf die Wasserstoffbrückenbindung wirkt, ist in die Gleichung (62) einzusetzen.

4.1.5. Berechnung des Mindestabstandes $\delta = |U(0) - E|$ zwischen der Gesamtenergie ${\it E}$ und dem Potenzialwall der Wasserstoffbrückenbindung

Aus der Gleichung (27) sieht man, dass

$$\left(\frac{\partial S}{\partial \xi}\right)^2 >> \eta \frac{\partial^2 S}{\partial \xi^2}$$

sein muss, wenn die klassische Näherung erlaubt sein soll. Wegen Gleichung (24) und Gleichung (26) folgt

$$\left(\frac{\partial S}{\partial \xi} = p = \sqrt{2m(E - U)}\right)$$

$$\left(\frac{\partial S}{\partial \xi}\right)^2 = p^2 = 2m(E - U)$$

$$\frac{\partial^2 S}{\partial \xi^2} = -\frac{m}{p}\frac{dU}{d\xi}$$

Also muss sein

$$p^{2} >> \left| \eta \frac{m}{p} \frac{dU}{d\xi} \right|$$

$$p^{3} >> \left| \eta m \frac{dU}{d\xi} \right|$$
(63)

Das bedeutet, dass der Impuls groß genug sein muss. Da

$$p = \sqrt{2m(E - U)}$$

ist, heißt das, dass der Abstand δ zwischen der Gesamtenergie E und dem Potenzial U an jedem Punkt, wo ein Teilchen mit der Energie E dem Potenzial U ausgesetzt wird, groß genug ist. Nach Gl. (63) bedeutet das konkret,

dass
$$\delta = \left| U - E \right| >> \frac{1}{2} \sqrt[3]{\frac{\eta^2}{m} \left| \frac{dU}{d\xi} \right|^2}$$
 (64)

an jedem Punkt ξ des Potenzialverlaufs sein muss, wenn man in der Rechnung die klassische Näherung anwenden will. In unserem Fall, wo sich in dem Bereich I ein Proton an den Potenzialwall annähert (s. Bild 8), bedeutet das für die Energien am Protonmittelpunkt, dass das δ der Bedingung (64) hinreichend genügen muss. Da der Proton – Durchmesser bekannt ist, hängt der Nachweis, ob (64) hinreichend erfüllt ist, nur von der Form der Potenzialkurve ab. Wäre das Proton nur ein unendlich kleiner Punkt, dann wäre (64) nicht erfüllt.

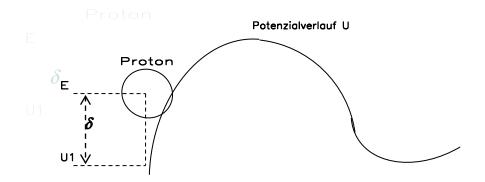


Bild 8 : Potenzielle Energie *U* und Gesamtenergie *E* des Protons im Moment der Berührung mit dem Potenzial U im Bereich I

4.1.6. Berechnung der Größe 16/R

In der Gleichung (62) für die Tunnel – Wahrscheinlichkeit tritt noch ein Faktor 16/R auf. Um die Zahl R zu bestimmen, benutzen wir die Formel (45a), in welcher die Größen $k_r(0)$ und $k_r(l)$ einzusetzen sind. Aus der Symmetrie der Parabel (Bild 11) ergibt sich, dass bei dieser Parabel in dem Koordinatensystem $U(\xi)$ gilt U(0) = U(l). Daher ergibt die Gleichung (36a)

 $k_r(0) = k_r(1)$, und im Blick auf die Gleichungen (16) und (17) ist

$$k_{r}(0) = k_{r}(l) = \frac{1}{\eta} \sqrt{2m[U(0) - E]}$$

$$k_{0} = \frac{1}{\eta} \sqrt{2mE}$$

$$k_{0}n_{1} = \frac{1}{\eta} \sqrt{2m(E - U_{1})}$$

$$k_{0}n_{3} = \frac{1}{\eta} \sqrt{2m(E - U_{3})}$$

Da das δ in der Gleichung (64) natürlich auch für den Punkt ξ = 0 gilt, muss auch gelten

$$\delta = |U(0) - E| >> \frac{1}{2} \sqrt[3]{\frac{\eta^2}{m} \left| \frac{dU}{d\xi} \right|_{\xi=0}^2}$$

Die rechte Seite dieser Ungleichung kann man mit Hilfe des Potenzialverlaufs ausrechnen.

Aus den oben genannten Gleichungen für $k_r(0)$, k_0 , k_0n_1 , k_0n_3 ergibt sich (siehe Gleichung (45a)

$$R = 1 + \frac{n_3^2}{n_1^2} + \frac{U(0) - E}{En_1^2} + \frac{En_3^2}{U(0) - E}$$
 (65)

und wegen

$$n_1^2 = \frac{E - U_1}{E}$$

$$n_3^2 = \frac{E - U_3}{E}$$

folgt

$$R = 1 + \frac{E - U_3}{E - U_1} + \frac{\delta}{E - U_1} + \frac{E - U_3}{\delta}$$

Setzt man $E_3 = E - U_3$, $E_1 = E - U_1$, so wird

$$R = 1 + \frac{E_3}{E_1} + \frac{\delta}{E_1} + \frac{E_3}{\delta}$$

Nun ist nach (59)

$$P = \frac{16}{R}e^{-2K}$$

Wir untersuchen, unter welchen Umständen der Proportionalitätsfaktor 16/R gleich 1 ist. Es soll also gelten

$$16 = 1 + \frac{E_3}{E_1} + \frac{\delta}{E_1} + \frac{E_3}{\delta}$$

Daraus folgt

$$\delta = \frac{1}{2} \left(15E_1 - E_3 \right) \pm \frac{1}{2} \sqrt{\left(15E_1 - E_3 \right)^2 - 4E_1 E_3} \tag{66}$$

Insbesondere ist bei $U_1 = U_3 = 0$

$$\delta = 0.0718E \tag{66a}$$

für alle Werte von E. Ist also die Bedingung (66) erfüllt, dann kann die Gleichung (59) in der einfachen Form

$$P = e^{-2K} \tag{67}$$

geschrieben werden, und die Gleichung (62) kann in der einfachen Form

$$P_{t} = \exp\left[-\frac{U_{2} - E}{k_{B}tt_{0}}(t - t_{0}) - \frac{U_{2}}{k_{B}t}\right]$$
 (68)

geschrieben werden. Damit ist die Berechnung der Tunnelwahrscheinlichkeit für einen parabelförmigen Potenzialwall unter Temperatureinfluss abgeschlossen.

Nachdem die Wirkung der Basenkonkurrenz auf die DNA - Struktur ausführlich beschrieben worden ist, wenden wir uns nun dem Zusammenhang zwischen Temperaturänderungen / Energieänderungen und langfristiger DNA – Strukturänderung zu.

4.1.7. Die Änderung der Tunnel – Wahrscheinlichkeit durch Temperatur – und Energieänderung.

Wir betrachten jetzt zwei aufeinanderfolgende, verschiedene Tunnelvorgänge. Der erste ereignete sich an einer Wasserstoffbrückenbindung mit dem Scheitelwert U_{21} im Potenzialverlauf; der zweite ereignet sich bei einer Wasserstoffbrückenbindung mit dem Scheitelwert U_{22} . Im ersten Vorgang wirkte bei der Temperatur t_1 die Energie E_1 auf den Donor der Wasserstoffbrückenbindung; im zweiten Vorgang wirkte bei der Temperatur t_2 die Energie E_2 auf den Donor der Wasserstoffbrückenbindung. Für die Prozesse E_2 und E_3 gelten folgende Gleichungen für die Tunnel – Wahrscheinlichkeiten:

Vorgang 1:
$$P_{1} = \exp \left[-\frac{U_{21} - E_{1}}{k_{B}t_{1}t_{01}} (t_{1} - t_{01}) - \frac{U_{21}}{k_{B}t_{1}} \right]$$
 (68a)

Vorgang 2:
$$P_{2} = \exp \left[-\frac{U_{22} - E_{2}}{k_{B}t_{2}t_{02}} (t_{2} - t_{02}) - \frac{U_{22}}{k_{B}t_{2}} \right]$$
 (68b)

Dabei bedeuten:

E₀ = Kleinste Tunnel – Energie

U21= Scheitelpunkt des Potenzials der Wasserstoffbrückenbindung 1

U22= Scheitelpunkt des Potenzials der Wasserstoffbrückenbindung 2

t₀₁ = charakteristische Temperatur der Wasserstoffbrückenbindung 1

t₀₂ = charakteristische Temperatur der Wasserstoffbrückenbindung 2

t₁ = Temperatur während des Vorganges 1

t₂ = Temperatur während des Vorganges 2

E₁ = Gesamtenergie eines Protons vor dem ersten Tunnelvorgang

E₂ = Gesamtenergie eines Protons vor dem zweiten Tunnelvorgang

k_B =0.863 x 10⁻⁴ eV/grad Boltzmann - Konstante

Das Verhältnis der beiden Tunnel – Wahrscheinlichkeiten ist

$$\frac{P_{2}}{P_{1}} = \exp\left\{-\frac{U_{22} - E_{2}}{k_{B} t_{2} t_{02}} (t_{2} - t_{02}) - \frac{U_{22}}{k_{B} t_{2}} + \frac{U_{21} - E_{1}}{k_{B} t_{1} t_{01}} (t_{1} - t_{01}) + \frac{U_{21}}{k_{B} t_{1}}\right\}$$

$$= \exp\left\{\frac{1}{k_{B} t_{1}} \left[(U_{21} - E_{1}) \frac{t_{1} - t_{01}}{t_{01}} + U_{21} \right] - \frac{1}{k_{B} t_{2}} \left[(U_{22} - E_{2}) \frac{t_{2} - t_{02}}{t_{02}} + U_{22} \right] \right\}$$

$$= \exp\left\{\frac{1}{k_{B} t_{1}} \left[U_{21} \cdot \frac{t_{1}}{t_{01}} - E_{1} \frac{t_{1}}{t_{01}} + E_{1} \right] - \frac{1}{k_{B} t_{2}} \left[U_{22} \frac{t_{2}}{t_{02}} - E_{2} \frac{t_{2}}{t_{02}} + E_{2} \right] \right\}$$

$$\frac{P_{2}}{P_{1}} = \exp\left\{\frac{1}{k_{B} t_{1}} \left[U_{21} \cdot \frac{t_{1}}{t_{01}} - E_{1} \frac{t_{1}}{t_{01}} \right] + \frac{E_{1}}{k_{B} t_{1}} - \frac{1}{k_{B} t_{2}} \left[U_{22} \frac{t_{2}}{t_{02}} - E_{2} \frac{t_{2}}{t_{02}} \right] - \frac{E_{2}}{k_{B} t_{2}} \right\}$$

$$(69)$$

Mit der Abkürzung

$$\Delta_S = \frac{E_2}{t_2} - \frac{E_1}{t_1} \tag{70}$$

erhält man

$$\frac{P_2}{P_1} = \exp\left\{\frac{1}{k_B t_1} \left[U_{21} \cdot \frac{t_1}{t_{01}} - E_1 \frac{t_1}{t_{01}}\right] - \frac{1}{k_B t_2} \left[U_{22} \frac{t_2}{t_{02}} - E_2 \frac{t_2}{t_{02}}\right] - \frac{1}{k_B} \Delta_S\right\}$$

$$\frac{P_2}{P_2} = \exp\left\{-\frac{1}{k_B t_{12}} \left[U_{22} - E_2\right] + \frac{1}{k_B t_{12}} \left[U_{21} - E_1\right] - \frac{1}{k_B} \Delta_S\right\} \tag{71}$$

Entsprechend Bild 11:

$$U_{22} = U_{02} + E_0$$

$$U_{21} = U_{01} + E_0$$

$$\frac{P_2}{P_1} = \exp\left\{-\frac{1}{k_B t_{02}} \left[U_{02} + E_0 - E_2\right] + \frac{1}{k_B t_{01}} \left[U_{01} + E_0 - E_1\right] - \frac{1}{k_B} \Delta_S\right\}$$
 (73)

Aus Gleichung (61) erhält man

$$\begin{split} &U_{01,02} = k' t_{01,02}^{2} \qquad k' = 2m \frac{4\xi_{0}^{2}\pi^{4}k_{B}^{2}}{h^{2}} \qquad \quad \xi_{0}: \text{ siehe Bild 11} \\ &\frac{P_{2}}{P_{1}} = \exp \left\{ -\frac{1}{k_{B}} \frac{1}{t_{02}} \left[k' t_{02}^{2} + E_{0} - E_{2} \right] + \frac{1}{k_{B}} \frac{1}{t_{01}} \left[k' t_{01}^{2} + E_{0} - E_{1} \right] - \frac{1}{k_{B}} \Delta_{S} \right\} \\ &\frac{P_{2}}{P_{1}} = \exp \left\{ -\frac{1}{k_{B}} \left[k' t_{02} \right] + \frac{1}{k_{B}} \left[k' t_{01} \right] - \frac{E_{0} - E_{2}}{k_{B}} \frac{1}{t_{02}} + \frac{E_{0} - E_{1}}{k_{B}} \frac{1}{t_{01}} - \frac{1}{k_{B}} \Delta_{S} \right\} \\ &\frac{P_{2}}{P_{1}} = \exp \left\{ +\frac{1}{k_{B}} \left[k' (t_{01} - t_{02}) + \frac{t_{02} E_{0} - t_{02} E_{1} - t_{01} E_{0} + t_{01} E_{2}}{t_{01} t_{02}} - \Delta_{S} \right] \right\} \end{split}$$

Mit den Abkürzungen

$$\Delta E_1 = E_1 - E_0$$

$$\Delta E_2 = E_2 - E_1$$
(74)

$$\Delta_C = \frac{E_2}{t_0} - \frac{E_1}{t_0} \tag{75}$$

ergibt sich

$$\frac{P_2}{P_1} = \exp\left\{ +\frac{1}{k_B} \left[k' \left(t_{01} - t_{02} \right) - E_1 \frac{t_{02} - t_{01}}{t_{01} t_{02}} + \frac{\Delta E_2}{t_{02}} + E_0 \frac{t_{02} - t_{01}}{t_{01} t_{02}} - \Delta_S \right] \right\}$$
(76)

$$\frac{P_2}{P_1} = \exp\left\{ +\frac{1}{k_B} \left[k' \left(t_{01} - t_{02} \right) + \frac{\Delta E_2}{t_{02}} - \frac{\Delta E_1}{t_{01}} \frac{t_{02} - t_{01}}{t_{02}} - \Delta_S \right] \right\}$$
 (77)

Nehmen wir an, dass zwei aufeinander folgende Tunnel - Vorgänge immer in demselben DNA-Fragment und immer auf denselben Bindungstyp wirken und deswegen to1 =to2 ist, dann ist

$$\left(\frac{P_2}{P_1}\right)_{t_0=t_0} = \exp\left\{\frac{1}{k_B}\left[\Delta_C - \Delta_S\right]\right\}$$
(78)

Das ist das Verhältnis einer zweiten Tunnel – Vorgangs – Wahrscheinlichkeit zu einer ersten Tunnel – Vorgangs – Wahrscheinlichkeit, wenn beide Vorgänge bei verschiedenen Energien und Temperaturen stattfinden. Bei jedem Tunnel – Vorgang wird ein tautomeres Basenpaar erzeugt. Nach der Replikation entsteht in jedem Prozess aus dem tautomeren Basenpaar ein neues Basenpaar, welches nicht reparabel ist, wenn die hohe Basenkonkurrenz – Energie zu einer irreparablen Wasserstoffbrückenbindung führte. Dann ist der DNA-Reparaturmechanismus unwirksam, und die Basenverteilung ändert sich irreparabel in jedem der beiden Vorgänge.

Nun wollen wir, zunächst ohne Beachtung von Energien und Temperaturen, die Verteilungs – Änderungen in DNA – Fragmenten untersuchen. Zu der Gleichung (78) kommen wir zurück im Abschnitt 6. Diese Fragmente seien Replikationseinheiten (Replicons), die einen Verteilungsstart und ein Verteilungsende haben.

5. Zufällige Änderung der Basenverteilung der DNA während der Replikation

In diesem Kapitel wird die Änderung der Basenverteilung untersucht aus dem Blickpunkt eines Beobachters, der die physikalischen Gleichungen (68a) und (68b) nicht kennt, sondern lediglich feststellt, dass manchmal eine Verlängerung einer monotonen Sequenz stattfindet während der Replikation. Der Beobachter berechnet die Chancen, die ein Basenbaustein hat, während der Replikation die Stelle zu erreichen, wo die Verlängerung stattfindet, vorausgesetzt, dieses wird durch Los entschieden.

Während der Replikation eines Replicons findet eine Verteilung aller in der Zelle produzierten Basenbausteine auf die codogene Matrix statt. Dies geschieht in Übereinstimmung mit der Kopiervorschrift. Während der Verteilung sind einige Bausteine (falls sie in den Bereich einer monotonen Sequenz gelangen) der Basenkonkurrenz ausgesetzt und andere nicht. Diejenigen Basenbausteine, die der Basenkonkurrenz ausgesetzt sind, reagieren in sehr verschiedener Weise: Die meisten von ihnen verlieren ihre erworbene Energie durch Ablenkung, Reibung oder kurze Abklingzeiten. Nur einige werden wenig abgelenkt oder haben lange Abklingzeiten. Noch weniger Bausteine besitzen am Ende der Basenkonkurrenz (das ist am Ende der Replikation der monotonen Sequenz) noch so viel Energie, dass sie an der nächsten Replikationsposition einen Tunnelvorgang provozieren und eine irreparable Wasserstoffbrückenbindung erzeugen können, wenn ihre Energie noch über der quantenmechanischen Energiestufe n = 2 liegt. Es wird angenommen, dass irgend ein Basenbaustein nur zufällig die hohe Energie erreichen und erhalten kann, weil die genauen Eigenschaften eines in der Zelle produzierten Bausteines nicht ermittelt werden können. Einer von allen produzierten Basenbausteinen jedoch wird am besten diese Eigenschaften (die hohe Energie zu erreichen und zu erhalten) in sich vereinigen. Wir nennen diesen Baustein den "Elitist". Ein Elitist kann entstehen, wenn Basenbausteine sich verklumpen und dabei eine große Rotationsenergie und (im Vergleich dazu) kleinere Translationsenergie erhalten.

Dieses Kapitel listet alle günstigen und alle möglichen Verteilungen auf, die in einem Replicon während der Replikation auftreten können. Die günstigen

Verteilungen sind jene, in denen der Elitist dort ankommt, wo die Basenkonkurrenz wirkt. Das Verhältnis der Anzahl der günstigen Verteilungen zu der Zahl aller möglichen Verteilungen ist dann die Auftritts – Wahrscheinlichkeit des Elitists an der Stelle, wo die Basenkonkurrenz während der Replikation wirkt.

5.1. Aufzählung aller möglichen Verteilungen

Um die Berechnungen allgemein zu halten, benutzen wir anstelle der realen Basen Adenin, Cytosin, Guanin, Thymin die allgemeinen Bezeichnungen E, S, X, Y und lassen so die Zuordnung zu den realen Basen beliebig. Die Anzahlen der allgemeinen Basen werden mit Kleinbuchstaben e, s, x, y bezeichnet.

Die Aufgabe besteht jetzt darin, die Zahl aller möglichen Verteilungen auf die Matrix des Mutterstranges zu berechnen, die während der Replikation in einem Replicon mit

e + s + x +y Basen möglich sind, wobei die Kopiervorschrift eingehalten wird.

Zwecks Vereinfachung schauen wir nur auf einen Basentyp, z.B. auf den Basentyp S in

Bild 12.

Originale Basenfolge:

X	S	S	E	X	Y	X	Y	Y	E	S	E	Y	E	X	X	S	S	S	Y	Y	X
																					i '

Aufgeteilte Basenfolge:

	S	S								S						S	S	S			
X				X		X								X	X						X
			E						E		E		E								
					Y		Y	Y				Y							Y	Y	

Bild 9: DNA - Fragment, natürliche und in gleiche Basen gesplittete Basensequenzen

Im Fall von Bild 9 verlangt die Kopiervorschrift, dass in der ersten monotonen Sequenz zwei gleiche Basen S, S, in der zweiten "monotonen Sequenz" eine Base S und in der dritten monotonen Sequenz drei gleiche Basen S, S, S existieren müssen.

Wie groß ist die Zahl der Möglichkeiten, sich so zu verteilen wie in Bild 9? Da alle S – Basen zum selben Basentyp gehören, kann jede Base der einen monotonen Sequenz zufällig in einer anderen monotonen Sequenz desselben Basentypes erscheinen. Die Aufzählung aller möglichen Fälle für die Basenart S, sich so zu

verteilen wie in Bild 9, ergibt
$$\frac{6!}{2!1!3!} = 60$$

Das ist so, wie in einem Klassenzimmer mit 10 Schülern, denen der Lehrer die Anweisung gegeben hat, sich so zu verteilen, dass zwei Bänke jeweils mit vier Schülern und eine Bank mit nur zwei Schülern besetzt sind. Wie sich die Schüler innerhalb der jeweiligen Bänke setzen, ist dem Lehrer egal. Es gibt

$$\frac{10!}{4! \cdot 4! \cdot 2!} = 3150$$

verschiedene Möglichkeiten, sich so zu verteilen, wie es der Lehrer gefordert hat. In einer Gruppe von 7 Schülern, die sich auf eine Bank mit 4 Schülern und eine Bank mit 3 Schülern verteilen sollen, gibt es

$$\frac{7!}{4! \cdot 3!} = 35$$
 Möglichkeiten.

Die Zahl der Basen, die sich in den einzelnen monotonen Sequenzen befinden, ist

$$s_1$$
, s_2 , s_3 , ..., e_1 , e_2 , e_3 , ..., x_1 , x_2 , x_3 , ..., y_1 , y_2 , y_3 , ... (in Bild 12 ist $s_1 = 2$, $s_2 = 1$, $s_3 = 3$)

Die Aufzählung aller möglichen, mit der Kopiervorschrift des Bildes 9 übereinstimmenden Verteilungen ist

$$r_1 = \frac{s!}{s_1! s_2! s_3! \dots} \cdot \frac{e!}{e_1! e_2! e_3! \dots} \cdot \frac{x!}{x_1! x_2! x_3! \dots} \cdot \frac{y!}{y_1! y_2! y_3! \dots}$$
(79)

und (in demselben Replicon) ergibt die Aufzählung aller möglichen Verteilungen, die sich von den ersten nur dadurch unterscheiden, dass in der Basenart E sich die Anzahl um eins erniedrigt, aber dafür in der Basenart S sich die Anzahl um eins erhöht hat,

$$r_2 = \frac{(s+1)!}{(s_1+1)!s_2!s_3!\dots} \cdot \frac{(e-1)!}{(e_1-1)!e_2!e_3!\dots} \cdot \frac{x!}{x_1!x_2!x_3!\dots} \cdot \frac{y!}{y_1!y_2!y_3!\dots}$$
(80)

E ist eine ausgetauschte (exchanged) Base, S ist eine Base, welche eine Base E ersetzt (substituiert) hat; X, Y sind Basen, die an der Substitution nicht beteiligt sind.

Mit diesen beiden Gleichungen ist die Anzahl aller möglichen zufälligen Verteilungen, die mit der ersten (r_1) bzw. der geänderten Kopiervorschrift (r_2) übereinstimmen, angegeben.

Die Basenbausteine können sich jedoch *nicht zufällig innerhalb einer monotonen Sequenz beliebig* als Basen anordnen, da sie kurz vor der Bildung des komplementären Stranges (z.B.durch Verklumpung) verschiedene (Rotations-) Energien aufnehmen [17], [18], [19], [20], [21], [22], [23] und somit nur nacheinander in einer von da an festgelegten Reihenfolge an der monotonen Sequenz ankommen. Diese Reihenfolge ist in dem Moment festgelegt, sobald die Zuordnung der Teilmenge zu einer bestimmten monotonen Sequenz feststeht, denn von da an wirken die elektrostatischen Kräfte zwischen Donor und Akzeptor. Solange diese elektrostatischen Kräfte vernachlässigbar klein sind (bei Abständen > 10⁻⁶ cm) können die Basenbausteine als frei beweglich angesehen werden, und die Zuordnung zu irgendeiner monotonen Sequenz ist zufällig.

5.2. Aufzählung aller günstigen Verteilungen und die Chance des Auftretens hoher Basenkonkurrenz – Energie

Deshalb interessiert uns, wie oft in diesen r verschiedenen Verteilungen der Elitist in der monotonen Sequenz erscheinen kann. Um das zu verdeutlichen, nehmen wir noch einmal das zweite Beispiel mit den Schülern: Wir fragen, wie oft der eine von den 7 Schülern (der "Elitist") in den 35 Verteilungen auf die Bank mit 4 Sitzen zufällig gelangen kann. Dieser Schüler sei die Nummer 1. Es gibt folgende Versionen:

1234	1456
1235	1457
1236	1467
1237	
1245	1567
1246	
1247	
1256	
1257	
1267	
1345	
1346	
1347	
1356	
1357	
1367	

Der Schüler mit der Nummer 1 (der Elitist) kann

$$1 + \sum_{1}^{2} + \sum_{1}^{3} + \sum_{1}^{4} = 20$$

zwanzigmal innerhalb der 35 zufälligen Verteilungen auf der Viererbank zu sitzen kommen, das heißt mit einer Wahrscheinlichkeit 20/35 =57%. Man kann jede beliebige Zahl zwischen 1 und 7 benutzen; die Anzahl 20 für die günstigen Verteilungen bleibt immer dieselbe. Wir bezeichnen die Zahl aller günstigen Verteilungen (das ist die Zahl aller Fälle, in denen der Elitist zufällig innerhalb der monotonen Sequenz mit der Länge s_1 erscheint) als σ_{s1} und die Zahl aller Fälle, in denen der Elitist zufällig innerhalb der monotonen Sequenz mit der Länge s_1+1 erscheint. als σ_{s1+1} .

Das σ^4 lässt sich auf folgende Weise berechnen: Aus der obigen Zahlenfolge erkennt man, dass von der Gesamtzahl s =7 der replizierenden Basenbausteine (oben als "Schüler" bezeichnet) nur s-1=6 permutiert werden. Die Zahl der Bausteine in der vierstelligen (s_1 =4) monotonen Sequenz, die permutiert werden, ist s_1 -1, da der Elitist mit der Nummer 1 immer in der monotonen Sequenz bleiben soll. Die Zahl der übrigen permutierenden S-Basenbaustene, welche sich irgendwo in dem replizierenden Replicon befinden, ist s_1 -1 - 4 = 3. So ergibt sich als Anzahl der günstigen Verteilungen beim ersten Vorgang

$$\sigma_{s1} = \frac{(s-1)!}{(s_1-1)!(s-s_1)!}$$
 (80a)

und (in demselben Replicon) für den zweiten Vorgang, da sich dort s um eins und auch s1 um eins erhöht hat,

$$\sigma_{s_{1}+1} = \frac{s!}{s_1! \left[s+1-(s_1+1)\right]!} = \frac{s!}{s_1! (s-s_1)!}$$
(80b)

$$\sigma = \frac{\sigma_{s1+1}}{\sigma_{s1}} = \frac{s!}{s_1!(s-s_1)!} \cdot \frac{(s_1-1)!(s-s_1)!}{(s-1)!} = \frac{s}{s_1} , \qquad (80c)$$

ein einfaches Ergebnis, was sich als brauchbar erweisen wird.

Die Wahrscheinlichkeit, dass ein Elitist während der Replikation des Replicons zufällig in einer s_1 – stelligen monotonen Sequenz erscheint, ist

$$W_{s1} = \frac{\sigma_{s1} \cdot r_e \cdot r_x \cdot r_y}{r_t} \tag{81}$$

wo

$$r_e = \frac{e!}{e_1! \cdot e_2! \cdot \dots}$$

$$r_x = \frac{x!}{x_1! \cdot x_2! \cdot \dots}$$

$$r_y = \frac{y!}{y_1! \cdot y_2! \cdot \dots}$$

die Anzahlen aller möglichen e-, x-, y- Verteilungen und r_1 die Zahl aller möglichen Gesamtverteilungen sind. Das ist deswegen, weil der günstige Fall (der Elitist ist in der s_1 – stelligen monotonen Sequenz) ebenfalls in jeder der e-, x-, y- Verteilung auftreten kann. Die Wahrscheinlichkeit, dass der Elitist während der Replikation desselben Replicons in einer (s_1 +1) – stelligen monotonen Sequenz auftreten kann, ist

 $^{^4}$ Der griech. Buchstabe σ hat hier eine andere Bedeutung als derselbe im Abschnitt 4.

$$W_{s1+1} = \frac{\sigma_{s1+1} \cdot r_{e-1} \cdot r_x \cdot r_y}{r_2} \tag{82}$$

$$r_{e-1} = \frac{(e-1)!}{(e_1-1)! \cdot e_2! \cdot \dots}$$

$$\frac{r_e}{r_{e-1}} = \frac{e}{e_1} \tag{83}$$

$$\frac{W_{s1+1}}{W_{s1}} = \frac{\sigma_{s1+1}}{\sigma_{s1}} \frac{r_{e-1} \cdot r_1}{r_e \cdot r_2}$$
(84)

Schreibt man den Bruch $\frac{\sigma_{s1+1}}{\sigma_{s1}}$ als σ :

$$\frac{W_{s1+1}}{W_{s1}} = \sigma \frac{r_{e-1} \cdot r_1}{r_e \cdot r_2} \tag{85}$$

Division der Gleichung (79) durch (80) ergibt

$$\frac{r_1}{r_2} = \frac{e}{s+1} \cdot \frac{s_1 + 1}{e_1} \tag{86}$$

Einfügen von (83) in (85) ergibt

$$\frac{W_{s1+1}}{W_{s1}} = \sigma \cdot \frac{s_1 + 1}{s+1} \tag{87}$$

s ist die Gesamtzahl der substituierenden Basenart S. s_1 ist die Basenzahl in der monotonen Sequenz, die im Falle einer Mutation um eins verlängert wird. σ hängt ab von der Länge des Replicons.

Wir haben mit der Gl. (81) die Wahrscheinlichkeit Ws berechnet, mit welcher der Elitist während der Replikation der Verteilungseinheit in der monotonen Sequenz SSS... erscheint. Unter der Bedingung, dass am Ende dieser monotonen Sequenz (der Elitist gelangt auf Grund seiner Eigenschaften immer an das Ende der monotonen Sequenz) sich ein tautomeres Basenpaar befindet, wird dort eine irreparable Mutation provoziert [28].

6. Die Total – Wahrscheinlichkeit der durch Basenkonkurrenzen verursachten Mutationen in geologischen Zeiträumen

Nun ist es nahe liegend, beides zu kombinieren: Die Elitist – Auftritts – Wahrscheinlichkeit Ws (Abschnitt 5) und die physikalische Tunnel – Wahrscheinlichkeit P (Abschnitt 4).

1.Während der Replikation erscheint der Elitist aus der gesamten Menge aller s-Basenbausteine eines Replicons mit der Wahrscheinlichkeit W_s in dem Basenkonkurrenz – Bereich der monotonen Sequenz. Während diejenigen Basenbausteine, die nicht die große Energiespeicherfähigkeit besitzen, die ersten in der Replikation frei werdenden Positionen besetzen, gelangt der Elitist (z.B. dGTP) wegen seiner großen Energiespeicherfähigkeit an das Ende der monotonen Sequenz (Länge s_1) und erreicht dort wegen seiner dauernden, durch die Basenkonkurrenz hervorgerufenen Beschleunigung eine hohe Energiestufe. Es wird nun angenommen, dass bei der Zelltemperatur t_1 die Zellviskosität η gerade so groß ist, dass nach s_1 Replikationspositionen der Elitist dGTP die Basenkonkurrenz - Energie $T_{s1} = 3.818$ eV erreicht und damit die quantenmechanische Energiestufe n=2 $\left|-\frac{13.656}{2^2}\right| = 3.414 eV$

überschreitet.

2. Wir betrachten als Beispiel die Sequenz (hier sind nun wieder die realen Basen C=Cytosin ...gemeint)

$$replikations richtung \rightarrow \frac{C}{G} \frac{C}{G} \frac{C}{G} \frac{C}{G} \frac{T}{A} \frac{T}{A}$$

Der Elitist ist ein Basenbaustein dGTP, der durch Basenkonkurrenz bis zur Replikationsposition s_1 = 4 die Energie T_{s_1} =3.818 eV erhalten hat. Die Gesamtenergie des Elitist – Bindeprotons ist dann

$$E = T_{s1} - \frac{13.656}{2^2} = 3.818 - 3.414 = 0.4 \, eV$$

wenn man die für n=2 erforderliche Energie in Rechnung stellt. Diese Energie E reicht aus, um einen Tunnelvorgang zu provozieren.

Wegen seiner kleinen Translationsenergie besetzt der Elitist nicht die Positionen der monotonen Sequenz, sondern bleibt ein unabhängiger Basenbaustein. Jedoch in der nächsten (5.) Replikationsposition, also in der Elongationsphase des gerade replizierenden Basenpaares T/A,

provoziert der Elitist einen Tunnelvorgang und die Entstehung des tautomeren Basenpaares T*/A*, und wiederum wegen seiner großen Energie, wird unmittelbar danach die Base A* durch die Elitistbase G ausgetauscht, so dass das neue Basenpaar T*/G entsteht.

Diese neue Wasserstoffbrückenbindung ist durch den Reparaturmechanismus nicht reparierbar, da der Donor des Elitist-Bindeprotons die Energiestufe n = 2 besitzt und daher im Bild 7 die blaue Kurve gültig ist. Bei der darauf folgenden Replikation entsteht dann

$$aus \; \frac{T*}{G} \; das "vollkommen falsche" Basenpaar \frac{C}{G} \; ;$$

die irreparable Mutation hat also stattgefunden.

So setzt sich also die Total – Wahrscheinlichkeit für eine durch Basenkonkurrenz hervorgerufene irreparable Mutation aus diesen beiden Wahrscheinlichkeiten W₅ und P zusammen:

$$\varpi = P \cdot W_{c} \cdot \tag{88}$$

Da sich bei der Basenkonkurrenz die monotone Sequenz immer um eine Position von s_1 auf s_1+1 verlängert, haben wir bei zwei in derselben Replikationseinheit aufeinander folgenden, durch Basenkonkurrenzen mit der Total – Wahrscheinlichkeit ϖ entstehenden irreparablen Mutationen zu schreiben

$$\varpi_1 = P_1 \cdot W_{s1} \qquad \qquad \varpi_2 = P_2 \cdot W_{s1+1}
\frac{P_2}{P_1} = q \cdot \frac{W_{s1}}{W_{s1+1}} \qquad \qquad \left(q = \frac{\varpi_2}{\varpi_1}\right)$$
(89)

(Im Anhang [28], Seite 11, sind Erläuterungen zu dem Faktor q.)

Nun ist nach Gl. (78)
$$\left(\frac{P_2}{P_1}\right)_{t_m = t_n} = \exp \frac{\Delta c - \Delta s}{k_B}$$
 (78)

und nach Gl. (87) (hier wieder die allgemeine ersetzende Basenart S)

$$\frac{W_{s1}}{W_{s1+1}} = \frac{1}{\sigma} \cdot \frac{s+1}{s_1+1} \tag{87}$$

Wegen (89) ergibt sich also:

$$\exp\frac{\Delta c - \Delta s}{k_B} = \frac{q}{\sigma} \cdot \frac{s+1}{s_1+1}$$

$$\left[\Delta s - \Delta c\right] + k_B \cdot \ln\left[\frac{q}{\sigma} \cdot \frac{s+1}{s_1+1}\right] = 0 \qquad (90) \qquad \qquad \Delta_S = \frac{E_2}{t_2} - \frac{E_1}{t_1} \qquad \Delta_C = \frac{E_2}{t_0} - \frac{E_1}{t_0}$$

Ist in jedem der beiden Vorgänge die Tunnel - Energie E gleich groß, so ergibt sich als Konsequenz aus der Gleichung (89), also <u>bei Beginn</u> zweier aufeinander folgenden irreparablen Mutationen, die durch

Basenkonkurrenzen provoziert werden, als Ergebnis

$$E \cdot \frac{t_1 - t_2}{t_1 t_2} - k_B \cdot \ln \left[\frac{1}{q} \cdot \frac{s}{s_1} \cdot \frac{s_1 + 1}{s + 1} \right] = 0$$
(91)

unter Verwendung von Gl.(80c). Unter diesem Gesichtspunkt ist die Gleichung (91) eine voraussetzende Beziehung zwischen der Zelltemperatur t, der Länge der monotonen Sequenz s_1 und der Anfangs - Anzahl s der substituierenden Basen in der Replikationseinheit (die Indices beziehen sich auf die Werte vor dem ersten bzw. zweiten Vorgang). Ist bei der Temperatur t_1 die Zellviskosität gerade so groß, dass der Elitist an der Replikationsposition s_1 die kritische Energie E erreicht, dann wird dort ein Tunnelvorgang mit der Wahrscheinlichkeit P_1 provoziert und somit eine irreparable Verlängerung der monotonen Sequenz um eine Position auf s_1+1 . Nach einer Temperaturerniedrigung auf t_2 wird in derselben monotonen Sequenz mit der Wahrscheinlichkeit P_2 eine weitere irreparable Verlängerung auf s_1+1+1 provoziert. Wichtig ist dabei, dass die

Energie E in beiden Vorgängen gleich groß ist.

Soll bei zwei aufeinander folgenden irreparablen Verlängerungen immer dieselbe Tunnel – Energie E

$$E = T - \frac{Rhc}{n^2} \tag{92}$$

und somit bei n = 2 auch immer dieselbe Basenkonkurrenz - Energie T auftreten, so muss die durch die Temperaturerniedrigung von t_1 auf t_2 verursachte Viskosität–Erhöhung eine ganz bestimmte Größe besitzen. Gleichung (2) nach dem Viskosewert η aufgelöst, ergibt für den 1. und für den 2. Vorgang

 $\eta_{\, l} \! = \! [k \, x \, 0.975 \, x \, 10^{\text{-}12} \, \text{-}\, T] : [5.9086 \, x \, 10^{\text{-}10} \, x \, 0.89663] \! = \! [k \, x \, 0.18404 \, x \, 10^{\text{-}2} \, \text{-}\, T] \! : \! 5.9086 \, x \, 10^{\text{-}10} \, x \, 0.89663]$

 $\eta_2 = [(k+1) \times 0.975 \times 10^{-12} \text{-T}] : [5.9086 \times 10^{-10} \times 0.89663] = [(k+1) \times 0.18404 \times 10^{-2} \text{-T}] : [5.9086 \times 10^{-10} \times 0.89663]$

für die Viskositätswerte, wenn in beiden Vorgängen die gleiche Basenkonkurrenz – Energie T erreicht werden soll. Der Viskoseunterschied beträgt

$$\Delta \eta = \eta_2 - \eta_1 = 0.18404 \times 10^{-2} \text{ cgs} = 0.18404 \times 10^{-3} \text{ Pa s}$$

Dieser Viskositäts – Unterschied zwischen dem ersten und dem zweiten Mutationsvorgang entsteht nach geologischem Zeitraum durch den Temperaturunterschied der Zelle

$$\tau = t_1 - t_2 \tag{95}$$

zwischen beiden Vorgängen. Nur wenn τ gerade so groß ist, dass die Viskositäts-Vergrößerung $\Delta \eta = 0.18404 \text{ x } 10^{-3} \text{ Pa s }$ zwischen den beiden Vorgängen entsteht, kann sich in dem Replicon die monotone Sequenz um 1 Position verlängern.

Irreparable, durch Basenkonkurrenz verursachte Mutationen sind also nur zu erwarten, wenn gilt

$$\frac{E \cdot \tau}{t_1^2 - \tau \cdot t_1} - k_B \ln \left[\frac{1}{q} \cdot \frac{s}{s_1} \cdot \frac{s_1 + 1}{s + 1} \right] = 0$$
 (96)

Die Wahrscheinlichkeit einer Tunnelung durch die Wasserstoffbrückenbindung ist abhängig von der Energie des Protons: Je größer diese Energie, um so kleiner ist die Tunnel – Wahrscheinlichkeit. Wenn also bei zwei aufeinander folgenden Replikationen mit dabei gleich bleibender Temperatur (und somit gleich bleibender Zellviskosität) ein Elitist s1 +1+1 erzeugen würde, dann würde die Basenkonkurrenz so groß,

dass die Tunnel – Wahrscheinlichkeit zu klein würde, um eine Mutation der folgenden Wasserstoffbrückenbindung zur tautomeren Form zu provozieren. Deshalb muss die Basenkonkurrenz – Energie immer möglichst gleich groß bleiben (auch bei verkleinertem t_1).

Zum besseren Verständnis sollen die zwei aufeinander folgenden irreparablen, durch Basenkonkurrenzen verursachten Mutationen angeschrieben werden:

Zelltemperatur	Länge der mon. Seq. Änderu	ung in der Replikationseinheit
t ₁ +τ	S 1	(Zustand des Replicons vor der 1. irrep. Mut.)
t ₁		Ein Elitist beteiligt sich mit der Wahrsch. Ws ₁ an der Replikation der mon. Sequenz und gelangt wegen seiner großen Energie-Speicher-fähigkeit an das Replikationsende
t ₁	s ₁ +1 entsteht bei dieser Mutation	1. Tunnelung $P_1(t_1)$ und 1. irrep. Mut. mit der Wahrsch. $P_1(t_1)$ x Ws ₁
t ₁ -τ		Ein Elitist beteiligt sich mit der Wahrsch. Ws ₁₊₁ an der Replikation der <i>verlängerten</i> mon. Sequenz und gelangt

wegen seiner großen Energie-Speicher-fähigkeit an das Replikationsende

3

 $t_1-\tau$ s₁+2 entsteht 2.Tunnelung $P_2(t_1-\tau)$ und 2. irrep. Mut.

bei dieser Mutation mit der Wahrsch. $P_2(t_1-\tau)$ x W_{s1+1}

In einem Replicon mit einer mon. Sequenz der Länge s₁ hat der Elitist während der Replikations - Verteilung eine Chance, in die mon. Sequenz zu gelangen. Das geschieht mit der Wahrscheinlichkeit Ws₁. Bei der Temperatur t₁ verlängert sich dann mit der Wahrscheinlichkeit P₁(t₁)xWs₁ die mon Seq. um 1 Position.

In dem geänderten Replicon, was dieselbe Basensequenz besitzt mit Ausnahme der mon. Sequenz, die jetzt die Länge s_1+1 aufweist, hat der Elitist während der Replikations – Verteilung eine Chance, in die verlängerte mon. Sequenz zu gelangen. Das geschieht mit der neuen Wahrscheinlichkeit Ws₁₊₁. Bei der Temperatur t_1 - τ verlängert sich dann mit der Wahrscheinlichkeit P₁(t_1 - τ)xWs₁₊₁ die mon. Seq. wieder um 1 Position. Da bei jeder dieser durch Basenkonkurrenzen hervorgerufenen irreparablen Mutationen sich die mon. Sequenz um 1 Position verlängert, wird dadurch die Verteilungordnung in der DNA jedes Mal verändert. Wird in der Gleichung (96) q= 1 (s. Anhang [28], Seite 11) gesetzt, so folgt

$$t_1[K] = \frac{\tau}{2} + \frac{\tau}{2} \times \sqrt{1 + \frac{4E}{k_B \tau \ln\left(\frac{s_1 + 1}{s_1} \cdot \frac{s}{s + 1}\right)}}$$
(96a)

7. Interpretation der Gleichungen (96) und (96a)

Die Gleichungen (96) und (96a) liefern uns eine Beziehung zwischen der erniedrigten Zelltemperatur t_1 und bestimmten (durch s_1 und s charakterisierten) Replicons, in denen durch Abkühlung irreparable Mutationen zu erwarten sind.

E ist die Tunnelenergie

s₁, s sind die (*allgemeinen*) Parameter des Replicons vor dem Einwirken der Temperatur t₁. s₁ ist die Länge der monotonen Sequenz (deren Verlängerung um 1 Position provoziert wird) des Replicons, in welchem sich insgesamt s gleichnamige Basen befinden (dieselben Basen wie in der monotonen Sequenz).

In den Replikationseinheiten, in denen durch die Temperatur t_1 eine irreparable Verlängerung einer monotonen Sequenz auf s_1+1 stattgefunden hat, wird durch eine Temperaturerniedrigung auf $t_1-\tau$ während der Replikation eine weitere irreparable Verlängerung auf s_1+2 provoziert.

Weil sich bei jedem dieser Mutationen s_1 um eine Position vergrößert, verändert sich auch jedes Mal die Struktur in dem Replicon. So entstehen sukzessive Veränderungen der DNA – Replicons, wie sie in der Natur tatsächlich vorkommen.

Die Größe τ, also diejenige Temperaturdifferenz, welche die Zellviskositäts – Änderung

 $\Delta \eta = 0.18404 \times 10^{-3} \text{ Pa s}$

hervorruft, ändert sich bei verschiedenen Zelltemperaturen t_1 ; dieses muss bei der Berechnung des s aus Gleichung (96a) berücksichtigt werden.

Bei einer *Anomalie* der temperaturabhängigen Zellviskosität wäre die Gl. (96) falsch, da in diesem Fall keine Verlängerung der monotonen Sequenz eintreten würde. Wir gehen davon aus, dass die Zellviskosität normal von der Temperatur abhängt, dass also die Viskosität mit sinkender Temperatur zunimmt.

Die Gleichung (96) behält sich also vor, nur dort anwendbar zu sein, wo die Zellviskosität so von der Temperatur abhängt wie auf der Erde.

8. Evolution und Physik

Es scheint gerechtfertigt, diese Berechnungen auf die Evolutionstheorie zu übertragen [26]. In der Erdgeschichte hat es viele Temperaturänderungen gegeben. Warme und kalte Perioden haben sich abgewechselt. Besonders die Übergänge von warmen zu kalten Perioden haben neue Spezies hervor gebracht. Im Allgemeinen wird dieses Phänomen mit der Theorie des Darwinismus erklärt. Mit der Gleichung (96) haben wir noch eine zusätzliche Erklärung: Wenn auf eine warme Periode (t₁) eine kalte (t₁ - τ) folgt, werden bei monotonen Sequenzen irreparable Mutationen auftreten wegen Basenkonkurrenz. Diese Mutationen führen immer zu einer Änderung der DNA –Struktur. So ist es nachvollziehbar, dass in längst vergangenen warmen Perioden nur einfache DNA – Formen existiert haben mit sehr kurzen monotonen Sequenzen. Viele von diesen kurzen (monotonen) Sequenzen müssen sich wegen der Gleichung (96) infolge einer Temperatur – Erniedrigung verlängert haben. So haben sich mit dem Übergang von warmen zu immer kälteren Perioden wegen der Erd – Abkühlung die DNA – Strukturen allmählich verändert, es haben sich immer mehr monotone Sequenzen herausgebildet. [26]

Eine monotone Sequenz kann sich nur dann irreparabel verlängern, wenn die darauf folgende Base derselben Basenart angehört (Purin- bzw. Pyrimidinbase, s. Abschnitt 2.2.). Es sind also folgende

...AAAG → ...AAAA (Purinbasen-Verlängerung)
 ...CCCT → ... CCCC (Pyrimidinbasen-Verlängerung)
 ...GGGA → ...GGGG (Purinbasen-Verlängerung)
 ...TTTC → ... TTTT (Pyrimidinbasen-Verlängerung)

So können wir schlussfolgern, dass die DNA – Verteilungsordnung sich langfristig verändert durch lang anhaltende Temperatur – Erniedrigungen.

Diese neu entstandenen Eigenschaften sind somit als unmittelbare Folgen von Umwelt – Änderungen anzusehen.

8.1. Sukzessive Verlängerung der DNA

Die Gleichung

$$t_{1} \begin{bmatrix} {}^{0}C \end{bmatrix} = \frac{\tau}{2} + \frac{\tau}{2} \times \sqrt{1 + \frac{4E}{k_{B} \tau \ln\left(\frac{s_{1} + 1}{s_{1}} \cdot \frac{s}{s + 1}\right)}} - 273$$
 (96a)

wurde unter der Bedingung abgeleitet, dass jede Temperaturänderung τ eine Viskositätsänderung von $\Delta\eta$ = 0.18404 x 10⁻³ Pa s in dem Zellplasma hervorruft ⁵ und dass jede solche Viskositätsänderung bei Basenkonkurrenz während der Replikation eine Verlängerung einer s₁ – stelligen monotonen Sequenz um *genau eine Position* provoziert.

Aus der Gl. (96a) kann das s berechnet werden:

⁵ Zum Vergleich siehe [31] und [28]

$$s = \frac{\beta}{\frac{S_1 + 1}{S_1} - \beta}$$
 (96b) mit $\beta = e^{\frac{1}{k_B} \cdot \frac{E \cdot \tau}{t_1^2 - t_1 \cdot \tau}}$ $k_B = Boltzmannkonstante = 0.8631 \times 10^{-4} \text{ eV/grad}$

(Die Temperatur t₁ ist hier in Kelvin einzugeben). Man sieht, dass zu jedem t₁ und τ ein bestimmtes s gehört. Insbesondere erkennt man, dass mit sinkender Zelltemperatur t₁ die Basenzahl s der substituierenden Basen immer größer wird. Solange die Zelltemperatur t₁ sich nicht verkleinert, bleibt das für die Größe der Replikationseinheit maßgebende s gleich groß. Wenn die Zelltemperatur t₁ sich verkleinert, dann erfordert die Gleichung (96b) einen größeren Wert für s, und das bedeutet bei einer zu erwartenden neuen irreparablen Verlängerung der monotonen Sequenz eine größere Verteilungsmenge s, also eine größere Replikationseinheit. Daraus folgt, dass bei einer (lang genug anhaltenden) Verkleinerung von t₁ die Replikationseinheit sich vergrößern muss, damit eine neue irreparable Verlängerung der monotonen Sequenz provoziert werden kann.

So kann man die Gleichung (96b) auch für *mehrere* Vorgänge bei verschiedenen Temperaturen t_1 und verschiedenen τ ausrechnen – siehe Tabelle 1-, wobei die hohen Temperaturen sehr frühen Erdzeitaltern und die kleinen monotonen Sequenz - Längen s_1 den einfachsten Lebewesen entsprechen. Wir gehen so vor, dass wir bestimmte s_1 zu bestimmten Zelltemperaturen t_1 zuordnen und mit der Gl.(96b) das s ermitteln. s_2

-

 $^{^6}$ Bei immer gleich bleibendem $\Delta\eta$ ändert sich bei jeder Temperaturänderung das τ , weil bei niedrigeren Temperaturen t_1 schon eine kleinere Temp.-Änderung τ genügt, um *dieselbe* Viskositätsänderung $\Delta\eta$ hervorzurufen

Tab.1: s= Zahl der substituierenden Basen in einem mutierenden Replicon, $s_1=$ Länge der monotonen Sequenz /vor dem Einwirken der Temperatur t_1

τ^0	S 1	s ₁ +1	S	t₁ ⁰ C	$\eta[Pa \times s]$	E [eV]	n
1.85	6	7	12	66			
1.74	8	9	21	62.3	0.319 x 10 ⁻³	0.405	2
1.7	10	11	42	58.82	0.687 x 10 ⁻³	0.405	2
1.7	12	13	151	55.42	1.055 x 10 ⁻³	0.405	2
1.5	14	15	346	52.02	1.423 x 10 ⁻³	0.405	2
1.3	16	17	436	49.02	1.792 x 10 ⁻³	0.402	2
1.15	18	19	608	46.42	2.16 x 10 ⁻³	0.405	2
1.025	20	21	713	44.12	2.528 x 10 ⁻³	0.404	2
0.93	22	23	1101	42.07	2.896 x 10 ⁻³	0.404	2
0.85	24	25	1794	40.21	3.264 x 10 ⁻³	0.403	2
0.78	26	27	2532	38.51	3.632 x 10 ⁻³	0.404	2
0.72	28	29	3552	36.97	4 x 10 ⁻³	0.404	2

Die Energie E lässt sich aus der Gleichung

$$E = T_{s1} - 13.656/n^2$$

berechnen. Der erste Teil dieser Gleichung ist die auf eV normierte Basenkonkurrenz - Energie [Gl.(2)], der zweite Term $\frac{13.656}{n^2}$ ist die

Energie, die nach der Basenkonkurrenz bis zur Position s_1 das Bindeproton in der Wasserstoffbrückenbindung auf die Stufe n=2 anregt. Die Differenz ist die Tunnelenergie (s.Seite 52), die an der **Position s_1+1** einen Tunnelvorgang und so eine neue Verteilung s_1+1 , s+1 provoziert. Die Quantenzahl n muss bei jedem Mutationsvorgang n=2 sein. Das wird wegen Basenkonkurrenz bei s_1 und t_1 erreicht.

s ist die für die Elitistauftritts- Wahrscheinlichkeit notwendige Zahl der substituierenden Basen während eines irreparablen Vorganges in einer Replikationseinheit (=Replicon); die Gesamtgröße ist wegen der vier Basenarten das Vierfache. Durch die stetige Vergrößerung einer Replikationseinheit teilt diese sich mehrere Male in zwei Teile. Finden im Laufe der Zeit 18 Verdoppelungen statt, so entstehen bis zum hom. sap. 2¹⁸ x 3552 x 4 = 3.72 x 10⁹ bp.

Da die Tabelle 1 der sukzessiven Erniedrigung der Umgebungstemperatur auf der Erde entspricht, folgt daraus also diese sukzessive Verlängerung von Replikationseinheiten und der DNA im Verlaufe der Erd - Entwicklung und - Abkühlung.

Über Nebenwirkung der Basenkonkurrenz s. [28].

9. Mutation und Physik innerhalb kleinerer Zeiträume

In der Tab. 1 entsprechen die kleinsten monotonen Sequenzlängen s_1 den einfachsten Lebewesen und die hohen Temperaturen t_1 sehr frühen Erdzeitaltern. Untersuchen wir nun die einfachsten, heute als *Viren* bekannten Lebewesen, und setzen diese Organismen sehr hohen Temperaturen aus.

Wenn Viren in einem sehr warmen Raum (68.1°C) in jede Zelle eines Tierkörpers eindringen, dann wird nach einer längeren Zeit die Zellviskosität so klein, dass durch eine große Basenkonkurrenz – Energie [Gl.(2)] bei jeder Virusreplikation eine irreparable Verlängerung der sechsstelligen monotonen Sequenz *GGGGGG* (Tab.1) provoziert wird.

Die Virus – Replikation findet in der Zelle des Wirtes statt. Ein Fragment des Virus ist eine

Replikations - Einheit. Das Virusfragment

komme in dem Virus – Genom 1 mal vor. Besitzt der Tierkörper 10^{12} Zellen, dann befinden sich in dem infizierten Tierkörper 10^{12} Fragmente \mathcal{F} . Werden diese Fragmente repliziert [30], dann erwarten wir nach Gleichung (88) in dem überhitzten Raum eine irreparable Mutation mit der totalen Wahrscheinlichkeit

$$\boldsymbol{\varpi} = P \cdot W_{r}$$

in jedem dieser 10^{12} Virus –Fragmente aller 36 Sekunden ⁷. Es sei P = 36 x 10^{-12} . Mit der Formel (81) berechnen wir W_s = 0.0055 (s. Anhang [28]). (Die Elitist-Auftritts- Wahrscheinlichkeit ist bei den kleinen Virus-Fragmenten viel größer als bei den langen Fragmenten der höheren Organismen, da die Zahl aller möglichen Verteilungen viel kleiner ist.) Damit werden

Mutationen in jedem der 10¹² Virus – Fragmente nach immer 36 Sekunden erwartet:

$$\frac{36 \cdot 10^{-12} \cdot 0.0055}{36 \, s} = \frac{0.0055}{10^{12}}$$

Deshalb wird in dem gesamten Tierkörper

$$\frac{0.0055 \cdot 10^{12}}{10^{12} s} = \frac{0.0055}{1s} = \frac{0.0055 \cdot 3600}{1h} = \frac{19.8 irr.Mutat.}{1h} = \frac{1 irr.Mutat.}{3 \min}$$

erwartet, und in dem Fragment \mathcal{F} verlängert sich dann die monotone Sequenz GGGGGG um 1 Position. Wird der Tierkörper danach in den kühleren Raum (66.25°C) gebracht, so wird in dem gesamten Tierkörper nochmals mit ca. 1 irr. Virusmutat./3 min eine neue Verlängerung der monotonen Sequenz um 1 Position erwartet.

Wenn also Tiere, die in einem überhitzten Raum infiziert worden sind, danach einer tieferen Temperatur ausgesetzt werden, dann kann das eine Ursache für plötzlich auftretende, gefährliche Virus – Mutationen in Vögeln oder in anderen Tieren sein, wo auch die Übertragung dieser irreparabel mutierten Viren auf den Menschen nicht ausgeschlossen werden kann.

10. Zusammenfassung

Es wird der Vorgang der Basenkonkurrenz beschrieben und die Auswirkung dieses Effektes auf tautomere Basenpaare, die Entstehung bösartiger Tumore bei Basenkonkurrenz und die Erhöhung der Alterungs – Geschwindigkeit lebendiger Individuen. Außerdem wird die Wirkung der Basenkonkurrenz auf die DNA – Struktur und die Entstehung von Virusmutationen beschrieben.

⁷ wenn angenommen wird, dass die Virusreplikation 10³ mal schneller stattfindet als die Replikation der DNA der Wirtszelle.

Es werden Berechnungen der Bindungsenergie zwischen den Basenpaaren bei verschiedenen Energiestufen der Partner durchgeführt; dabei zeigt es sich, dass die Bindungsenergie stark ansteigt, wenn durch Basenkonkurrenz die Energiestufe eines Basenbausteines erhöht wird.

Die Tunnel – Wahrscheinlichkeit in Wasserstoffbrücken wird bei verschiedenen Temperaturen berechnet. Es wird die Gesamtwahrscheinlichkeit einer durch Basenkonkurrenz verursachten irreparablen Mutation berechnet bei verschiedenen monotonen Sequenz - Längen und bei verschiedenen Zelltemperaturen.

Bei dieser Basenkonkurrenz werden bei der Replikation irreparable Verlängerungen monotoner Sequenzen provoziert, die von der Zelltemperatur, der Zell - Viskosität und der monotonen Sequenzlänge abhängen. Die Berechnungen zeigen, dass infolge von Basenkonkurrenz bei sehr niedriger Zell – Viskosität nur *kurze* monotone Sequenzen verlängert und bei sehr hoher Zell – Viskosität nur *lange* monotone Sequenzen verlängert werden können. Dadurch können die im Laufe langer Evolutionsepochen (wo die Zell – Viskosität wegen der immer kleiner werdenden Umwelttemperatur mehr und mehr ansteigt) entstehenden *sehr langen monotonen Sequenzen und die Entstehung sehr langer DNAs erklärt werden*.

Die Berechnungen zeigen also, dass die sehr langen DNAs der hoch organisierten Organismen nicht etwa aus darwinistischen Zwängen⁸, sondern nur zur Befriedigung der Gleichung (89) entstanden sind, denn diese Gleichung ist die Grundlage obiger Berechnungen. Man muss also nur die Gültigkeit dieser Gleichung voraussetzen; sie lässt sich aber für q=1 leicht rechtfertigen (siehe [28] Seite 10).

E-Mail: redidrechsel@t-online.de

⁰

⁸ Es werden zur Protheincodierung ohnehin nur 1% aller Basenpaare benutzt.

Literatur

- [1] L. Stryer, Biochemie, 4. Auflage. Akademischer Verlag, Heidelberg, Berlin, Oxford (Kapitel V.31), 1996
- [2] A. L. Lehninger, 2001, (2005), Biochemie, 3. Auflage. Springer, Berlin (Kapitel 22.4).
- [3] Dawydow, A. S., Quantenmechanik, 1. Aufl., Barth Verlag 1992, Leipzig / Heidelberg
- [4] Joos, G., Lehrbuch der theoretischen Physik,, 8. Auflage, Akad. Verlagsanstalt Geest & Portig, Leipzig 1954
- [5] P. Ö. Löwdin, Quantum genetics and the aperiod solid. Some aspects on the biological problems of heredity, mutations, ageing, and tumours in view of the quantum theory of the DNA molecule; Uppsala, Sweden, Uppsala Univ., Quantum Chemistry Group for Research in Atomic, Molecular and Solid-state Theory, 1963
- [6] B. Cohen, P. M. Hare, and B. Kohler, J. Am. Chem. Soc. (2003), 125 (44), 13594 13601
- [7] C. E: Crespo-Hernandez, and B. Kohler, J. Phys. Chem. B (2004), 108,11182 11188
- [8] C.E. Crespo-Hernandez, B. Cohen, P. M. Have, and B. Kohler, CHEM. Rev. (2004), 104, 1977 2020
- [9] J. M. Pecourt, J. Peon and B. Kohler, J. Am. Chem. Soc. (2000), 122, 9348-9340 and (2001), 123, 10370
- [10] Matsika, S., J. Phys.. Chem. A. (2004), 108, 7584 7590
- [11] Bauer, J. A., Grundlagen der Atomphysik,, 3. Auflage, Springer 1945
- [12] Blochinzew, D. J., Grundlagen der Quantenmechanik, Dt. Verlag d. Wiss., 1953
- [13] Landau / Lifschitz, Lehrbuch der theoretischen Physik, Bd. II Quantentheorie, Akademie Verlag Berlin 1980[14]
- [14] Acta Cryst. (1953). **6**, 217 [doi:10.1107/S0365110X53000612] M. v. Laue Der Teilchenstrom bei Raumgitterinterferenzen von Materiewelle
- [15] R. Rein and F. E. Harris, Studies of Hydrogen Bonded Systems, The Journal of Chemical Physics, vol. 41, Nr. 11, 1964, pp. 3393 3401
- [16] S. Lunell and G. Sperber, Study of the Hydrogen Bonding in the Adenine Cytosine, and Guanine Thymine Base Pairs, The Journal of Chemical Physics, vol. 46, Nr. 6, 1967, pp. 2119 2124
- [17] Molekülphysik Wikipedia
- [18] Spektroskopie, Rotation und Schwingung. Angelika Simon, Lisa Kaufmann, Christian Köhler, PC Seminar: WS 09/10, Leitung: PD. Dr. W. Schärtl
- [19] Othmar Marti: Atome im elektrischen Feld. Universität Ulm
- [20] T. P. Hezel, C. E. Burkhardt, M. Ciocca, J. J. Leventhal: Classical view of the Stark effect in hydrogen atoms. In: American Journal of Physics. 60, 1992, S. 324, doi:10.1119/1.16875.
- [21] A. Hooker, C. H. Greene, W. Clark: Classical examination of the Stark effect in hydrogen. In: Physical Review A. 55, Nr. 6, 1997, S. 4609-4612, doi:10.1103/PhysRevA.55.4609.
- [22] P. Brick, C. Ell, M. Hübner, J.P. Prineas, G. Khitrova, H.M. Gibbs, C. Sieh, T. Meier, F. Jahnke, A. Knorr, S.W. Koch: Coulomb Memory Effects and Higher-Order Coulomb Correlations in the Excitonic Optical Stark Effect. In: physica status solidi (a). 178, Nr. 1, 2000, S. 459–463, <a href="doi:10.1002/1521-396X(200003)178:1<459::AID-PSSA459>3.0.CO;2-2">doi:10.1002/1521-396X(200003)178:1<459::AID-PSSA459>3.0.CO;2-2
- [23] Atom- und Molekülphysik. Gerd Fußmann, Vorlesung an der Humboldt-Universität zu Berlin, Sommersemester 2002

- [24] Saenger, W., Principles of Nucleic Structure, Springer 1988+
- [25] W. D. Drechsel, Tumour Physics, Mathematical Biosciences 213 (2008) 135 140
- [26] Dipl.-Phys. Dieter Drechsel, Evolution seen from the angle of quantum physics, www.basenkon.com/evolution&quantumphysics.pdf
- [27] Bruce D. Sidell (*Department of Zoology and Center for Marine Studies, University of Maine, Orono, ME 04469, USA*) and Jeffrey R. Hazel, Temperature affects the Diffusion of small Molecules through Cytosol of Fish Muscle, J. exp. Biol. **129**, 191-203 (1987)
- [28] Anhang: www.basenkon.com/basenordnung.pdf
- [29] Periasamy N, Kao HP, Fushimi K, Verkman AS Am J Physiol. 1992 Oct; 263
- (4 Pt 1):C901-7. Organic osmolytes increase cytoplasmic viscosity in kidney cells.
- [30] Falke D, Schulz Th F, Virusreplikation, Medizinische Mikrobiologie und Infektiologie pp. 439 445, DOI: $0.1007/978-3-540-46362-7_53$
- [31] Alba Cuecas et al.: Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules, Biophysics 2016 Aug. 23;111(4) 875 882

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002088/