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1. Introduction 
In a previous publication [1] the author described the base 
rivalry in monotonous DNA sequences and their effect on the 
DNA repair mechanism. As described in the article, during the 
monotonous sequence replication, energies appear  
theoretically to increase with a progressive replication fork 
up to the quantum mechanical energy level n=2 because of the 
base rivalry, and these rivalry energies affect the bond 
strength between the complementary bases. If there is a 
tautomeric base pair in the replication position where the 
rivalry energy is large enough, then in this position an 
irreparable mutation will occur, since the DNA repair 
mechanism cannot repair that error because too much binding 
energy. 
Thus a mutation (caused by base rivalry) can occur only on 
condition that a transition of a base pair into its tautomeric 
form is happened . It is remarkable that this transition 
likewise can occur by the effect of base rivalry energy. 
The base rivalry - energy which has an effect on a normal base 
pair provokes a tunnel process in its hydrogen bond, and 
produces the tautomeric form. After whose replication a 
different, irreparable base pair develops from the tautomeric 
base pair, when the rivalry - energy leads into a very strong 
hydrogen bond. This happens, however, by chance and in the 
following we will compute the probabilities of such accidental 
events. We take as object only a small replication unit 
(“residual fragment”) because it has a larger probability of 
such events. The result of these calculations is the equation 
(32) which could be useful for the theory of evolution and 
besides for clearing up of virus mutations.  

2. The problems 
The replication of large DNAs takes place by simultaneous 
replications of so called replicons with a length of more than 
104 bp. This happens continuously 5’ -> 3’ on the leading 
strand and discontinuously on the lagging strand in segments 
of 100 bp (eucariotic DNA) in the direction 3’ -> 5’. These 
segments (Okazaki-fragments) are replication units. When the 
replication of the whole replicon has finished, remains for 
the present on the lagging strand a small rest (s. fig. 1) 
which only after the last Okazaki – fragment is replicated. 
The length of this rest called “residual fragment” may be 0 … 
100 bp (eucariotic DNA), and this is also a replication unit 
because it has a replication beginning and a replication end.  



 

2

  

Fig. 1: Schematic specification of replication at end of 
replicon   

Now we assume that in this residual fragment a long monotonous 
sequence GGGGGGATTA develops in 3’->5’ on lagging strand 
during replication. So, high base rivalry energy comes into 
being. 
To make this clear, let us look to fig 2 where only the small 
rest of replicon, the residual fragment is shown: One sees the 
base pair A - T at position 7 (fig. 2a). If the base rivalry 
energy is large enough (caused by replication of the long 
monotonous sequence GGG … ) then it provokes a tunnel process 
(s. section 3) transforming the base pair A – T into its 
tautomeric base pair A* - T* (fig. 2b). Soon after (almost at 
the same time) a base component dGTP, having the high base 
rivalry energy, replaces the base A* so that the new base pair  
G – T* develops (fig. 2c) and this cannot be repaired because 
of the high binding energy developed between the two bases G 
and T*. Thus an irreparable mutation arises. We will see that 
the probability for emergence of high base rivalry energy is 
the greater, the smaller the residual fragment. The problem of 
distribution-probability in a sequence appears here (s. 
section 4). 
During the replication after next, the base pair G – T* which 
has an unusual geometry is transferred into the “perfect 
wrong” base pair G – C, so that the irreparable mutation is 
perfect and the monotonous sequence has lengthened.  

It seems to be interesting, to combine both proceedings: The  
distribution process which produces the high base rivalry 
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energy, and the tunnel process which produces the tautomeric 
base pair. These problems will be examined in section 5.  

Fig. 2a: Replicating residual fragment before tunneling     

Fig 2b: Replicating residual fragment under tunnel influence 
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Fig. 2c: Replicating residual fragment after tunnelling; base 
A* is replaced by the high-energy-base G  

In the following, we will describe the 3 phenomena: The tunnel 
probability (section 3), the distribution probability (section 
4), and the combination of both phenomena (section 5).   

3. Tunnel processes in biological hydrogen bonds 
Figure 3 shows the participating energies, energy of the donor 
and potential energy of the potential wall in a hydrogen bond. 
The energy Ek+1=(ground state energy)+Tk required for the 
provocation of the tunnel process is composed of the ground 
state energy -13.656 eV and the rivalry energy Tk which is 
created in fig. 2 up to the replication position 6. Therefore, 
the length of the new monotonous sequence is one position 
larger than the position k, where the rivalry energy in accord 
with the formula  
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arises (see [1]). (e0 = elementary charge, r1  = distance 
between the related complementary bases, rB = distance between 
successive bases, z is specific value based on the viscosity 
of the nucleoplasm.     
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Figure 3 shows the energy levels, which the donor of a hydrogen bond passes 

because of the base rivalry, and the energies of the potential wall of the 

hydrogen bond:  

While the energy in the quantum mechanic energy level n = 1 is -13,656 eV 

(ground state energy), the donor of the hydrogen bond receives the energy 

Tk, which is, for example +14,196 eV. This gives the donor the total energy 

-13,656 +14,196 = + 0,54 eV and reaches an energy that is not only over the 

energy level n = 2 (-3,414 eV), but extends into the potential field of 

hydrogen bond and thus provokes a tunnel passage.    

3.1. The tunnel probability  
How large is the probability of the tunnel passage of a proton 
through the potential wall? The calculation of the number of 
the protons passing through the potential wall in biological 
hydrogen bonds has been carried out for the first time by  
P. Ö. Löwdin [2], the calculation is carried out down to the 
last detail in [3]. The result is available for the areas I, 
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II and III (before, within and behind the potential wall). The 
three wave equations of the proton are  
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where h is Planck’s constant, and m is the proton mass. 
Considering the boundary conditions  
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all the constants in the equations (1) can be calculated.  
As a result, we need only the amplitude A3 of the proton wave 
that comes through the wall and the amplitude A1 of the proton 
wave approaching to the wall: 
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This is the probability of a single proton tunnelling through 
the wall. l is the width of the potential wall between the 

positions, where the tunnel energy E has its smallest level E0, 
considering that the tunnelling takes place above of this 
level. When the temperature t is taken into account, in which 
the tunnel process is provoked, the “temperature – dependent 
tunnel - probability” is 
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kB is Boltzmann’s constant. If the potential wall has the shape 
of a parabola, then   
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where U2 = peak potential of the wall and the “characteristic 
temperature” 
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U0 is the height of the wall; m is the proton mass. For the 
size of U0, see [4], [5], [6].     

E = -13.656 eV + Tk-1 
is the energy created by base rivalry up to the replication 
position k-1 when k means the mutation position.  

3.2. The change in the tunnel probability due to temperature - 
and energy - change 
We now consider two different tunnel processes. The first 
operation took place at a hydrogen bond where the potential 
wall peak value was U21, and the second operation takes place 
at a hydrogen bond, where the potential wall peak value is U22. 
In the first process, the energy E1 operated on the donor at 
the temperature t1. In the second process, the energy E2 
operates on the donor at temperature t2.  
For the operations 1 and 2 apply the equations for the tunnel 
probabilities:  
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E0 = Smallest tunnel energy in the computation 
U21 = vertex of the potential of the hydrogen bond 1  
U22 =  vertex of the potential of the hydrogen bond 2  
t01 = characteristic temperature of the hydrogen bond 1  
t02 = characteristic temperature of the hydrogen bond 2  
t1 = temperature during Operation 1  
t2 = temperature during operation 2  
E1 = total energy of a proton before tunnel process in the operation 1 

E2 = total energy of a proton before tunnel process in the operation 2  
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The ratio of the tunnel probabilities is  
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Using the abbreviation  
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According to fig. 3: 
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Assuming that two consecutive tunnel operations always  
work on the same type of binding and therefore t01=t02=t0, then  
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This is the proportion of a second tunnel process probability 
to a first tunnel process probability where both processes 
take place at different energies and temperatures. In each 
case of tunnelling, a tautomeric base pair is created. After 
replication in each process a different base pair develops 
from the tautomeric base pair which is inseparable, if a high  
rivalry energy led to an inseparable hydrogen bond. So the DNA 
repair mechanism is ineffective, and the base distribution 
changes irreparably in each of the two proceedings. 
Let us now, for the present irrespective of energies and 
temperatures examine statistically the distribution changes in 
DNA-fragments. We shall come back to the equations (16) and 
(17) later in section 5.  

4. The distribution of bases on the DNA during replication, 
and the chance of occurrence of high base rivalry energy  

In this section, the distribution change is examined from the 
point of view of an observer which does not know the physical 
equations (6) and (7) but only knows that a monotonous 
sequence lengthening appears sometimes during replication. The 
observer calculates the prospects of a base component to reach 
that place where the lengthening occurs, provided that the 
ticket for that place during replication is decided by drawing 
lots. 
During the replication of a certain DNA-segment, a 
distribution of all base components takes place which are 
produced in the cell onto the codogen matrix. This happens in 
accordance with the copy rule. In this distribution, some base 
components are exposed to the base rivalry (if they get to a 
monotonous sequence) but others not. Those produced base 
components which are exposed to the base rivalry respond in 
very different ways: Most of them lose their obtained energy 
owing to deviation, friction or owing to short fading times. 
Only a few are scarcely deflected, or have long fading times. 
Even fewer base components still have so much energy at the 
end of the base rivalry (that is, at the end of the monotonous 
sequence replication) that they provoke a tunnelling in the 
next replication position and can build an irreparable 
hydrogen bond because their donor energy is still over the 
quantum mechanical energy level n = 2. 
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It is assumed that any given base component only accidentally 
will possess the ability to reach and to maintain a high 
energy level because exact properties of a base component 
produced in the cell cannot be identified. However, there will 
be one of all base components produced in the cell which best 
joins those qualities (to reach and to maintain a high energy) 
together in itself. We name this base component the “elitist 
component”. 
This section lists all the favourable and all possible 
distributions within the certain DNA-segment. The favourable 
distributions are those in which the elitist component 
accidentally arises there where the base rivalry works. The 
proportion of the number of the favourable distributions to 
the number of all possible distributions is the appearance 
probability of the elitist component at this place where the 
base rivalry works during the DNA – replication.  

4.1. Enumeration of all possible distributions 
The 4 bases A, C, G, T are represented by the terms C, S, X, 
Y. C is the concerned base, which in case of a mutation 
process will be replaced with an irreparable mutation by the 
substituting base S. X and Y are any bases which do not change 
in the distribution change.  

For the purpose of simplification, we look at only one base 
type e.g. the base type S in fig. 4. In the case of fig. 4 the 
copy – instruction requires that in the first monotonous 
sequence two identical bases S,S, in the second “monotonous” 
sequence one base S, and in the third monotonous sequence 
three identical bases S,S,S must exist.   

Origin base sequence:  

X S S C X Y X Y Y C S C Y C X X S S S Y Y X 

 

Split base sequence:   

S S        S      S S S    
X    X  X        X X      X 

   

C      C  C  C         

     

Y  Y Y    Y       Y Y  

 

Figure 4: base sequence split into sequences of equal bases.  

How large is the number of possibilities to distribute itself 
as in fig 4 (agreeing with the copy – instruction)? Because 
all S-bases belong to the same base type, each base of the one 
monotonous sequence can accidentally appear in another 
monotonous sequence of the same base type. The enumeration of 
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all possible cases to distribute itself in the base type S as 
in fig. 4 results in 

60
!3!1!2

!6

 
This is the same as in a classroom with 10 students, where by the teacher’s 
direction the students distribute themselves on 2 benches containing four 
students each and 1 bench containing only two students. How the students 

arrange themselves is irrelevant to the teacher. There are 3150
!2!4!4

!10

 

various outcomes for the way the teacher has directed the distribution.  

In a group of 7 students which are to distribute to 1 bench with 4 students 
and 1 bench with 3 students, there are 7!/4!/3! = 35 possibilities.  

It is important to note that the replication is an 
establishment of an unchanged copy, only that the base 
components of a large stock are distributed randomly, but 
still according to the copy rule.  

Designating the total number of the bases S as s, the total 
number of the bases C as c, the total number of the bases X 
and Y as x and y respectively, and further the number of bases 
which are located in the single monotonous sequences as 

...,,,,...,,,,...,,,,...,,, 321321321321 yyyxxxcccsss 

(in fig. 4 is 3,1,2 321 sss ),  

then the enumeration of all possible distributions agreeing to 
the copy –instruction in fig. 4 results in 

...!!!

!

...!!!

!

...!!!

!
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!
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r

    

(18) 

and the number of all possible distributions in a sequence 
that is different from the 1. sequence only in the fact that 
in a box C the base number decreased by one, but in the box S 
the base number was increased by one, is   
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With both equations, the number of all accidental possible 
distributions which agree with the copy – instruction is 
written down. All these distributions can appear during 
replication.  

4.2. Enumeration of all favourable distributions, and the 
chance of occurrence of high base rivalry energy 

Now we wish to know how often an elitist component appears in 
all these r distributions within a certain monotonous 
sequence.  

To make this clear we take once again the second example of 
the students: We ask how often one of the 7 students (the 
“elitist component”) in 35 distributions will sit in the bench 
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with four seats. This student may have the number 1. There are 
the following versions:  

1 2 3 4    1 4 5 6 
1 2 3 5  1 4 5 7 
1 2 3 6  1 4 6 7 
1 2 3 7 
1 2 4 5  1 5 6 7 
1 2 4 6 
1 2 4 7 
1 2 5 6 
1 2 5 7 
1 2 6 7  

1 3 4 5 
1 3 4 6 
1 3 4 7 
1 3 5 6 
1 3 5 7 
1 3 6 7  

The student with the number 1 (the elitist component) can sit 

201
4

1

3

1

2

1

 

times within 35 accidental distributions on the four seat 
bench, giving the probability 20/35 = 57%. One can take any one 
number from 1 to 7; the number 20 of all favourable 
distributions remains the same. We designate the number of all 
favourable distributions (that is the number of all cases in 
which the elitist accidentally appears within a monotonous 
sequence with the length s1) as s1 and the number of cases in 
which the elitist accidentally appears within a monotonous 
sequence with the length s1+1 as s1+1. 

To determinate the number of cases in which a certain base 
component (the elitist component) while distribution of all s-
components  accidentally appears within the six-digit 
monotonous sequence we use the step-by-step- program SIGMA6, 
to find in the web-side:  

http://www.basenkon.com/SIGMA.pdf

     

Then the monotonous sequence is lengthened for one position 
through the base rivalry so that the length of the monotonous 
sequence becomes 7 nucleotides. To determinate the number of 
cases in which the elitist component accidentally is located 
within the seven-digit monotonous sequence we use the step-by-
step-program SIGMA7, to find in the same web-side.  

The probability that an elitist component appears in an s1-
digit monotonous sequence during replication (of whole 
residual fragment) is 

1

1
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(20) 

where 

http://www.basenkon.com/SIGMA.pdf
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are the numbers of all possible c-, x-, y- distributions and 

r1(2) is the number of all possible distributions. This is 
because that the convenient case (that means, the elitist is 
within the s1-digit monotonous sequence) also can appear in 
each of the c-, x-, y-distributions. The statistical 
propability  that an elitist component appears in an (s1+1)-
digit monotonous sequence during replication is 
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Defining the fraction  
1

11
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s  as : 
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Dividing equation (18) through equation (19) results in 
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By inserting (22) and (25) into (24):    
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 (26)  

s is the total number of the substituting base type S. s1 is 
the base number in the monotonous sequence which is lengthened 
in case of mutation. depends on the length of the DNA – 
fragment. 

Now we have calculated the probability for a distribution, in 
which the elitist appears there where the base-rivalry energy 
becomes highest (in the monotonous sequence sss . . .). On 
condition that at the end of this monotonous sequence exists a 
tautomeric base pair then an irreparable mutation develops 
itself. 
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Here we will calculate the distribution-probability W7 for the 
elitist’s appearance in different lengths of residual 
fragments:    

Table 1: Examples of residual fragments       

2

17
7 r

rrr
W yxc

 

Resid.- 
Fragm.          W7  

GGGGGGGATT               1.0  

GGGGGGGATTGG              0.78  

GGGGGGGATTGGGG              0.64 

GGGGGGGAACGTACA              0.875 

GGGGGGGATTTAACCCGGTT             0.778 
GGGGGGGATTCCCAATTGTAGGCCC      0.233 
GGGGGGGGACTTTAAAGGCCATTGCATTGGAACTTG    0.003  
GGGGGGGACTTTAAAGGCCATTGCATTGGAACTTGGGGGGGGACTTTAAAGGCCATTGCATTGGAACTTG 1.4x10-12   

The substituting base is the base G 
The concerned base is the base A 
The X-base is the base C 
The Y-base is the base T 
The calculation of distribution-lots follows by x!/(x1!x2! …),for example. 
r2 must be calculated over all bases.   

It is evident that the elitist-appearance-probability W7 is the 
smaller, the larger the residual fragment.  

5. The total probability of mutation which is caused by base 
rivalry. 
Now it seems to be interesting to combine both tunnel 
probability and elitist probability. 
Two possible processes can occur during replication of a 
monotonous sequence: 
1. A tunnel process (probability Pt) creates a tautomeric base 
pair (A*-T*) at the end of the monotonous sequence because of 
high base rivalry energy. 
2. The elitist comes (with the probability Ws1) into the 
monotonous sequence. Then, the elitist (G) replaces the base 
A*, and the binding - energy between the new complementary 
bases increases itself because of high energy of the elitist 
and so causes an irreparable base modification (s. fig. 2c).  
So the total probability for an irreparable mutation (caused 
by base rivalry) at the end of an s1-digit monotonous sequence 
is the product of tunnel-probability and elitist-probability:      

11211 ss WPWP

     

(27)  

This means that nature works in the following way: The larger 
the statistical probability at which the preconditions of 
events occur accidentally, the smaller the physical 
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probability for triggering these events. We assume that the 
total mutation probability  is (statistical) the same in each 
mutation process. 
When, therefore, the probability to find the elitist component 
in the monotonous sequence is large then nature only needs a 
small tunnel – probability to trigger the mutation (as with a 
dice game in which the desired combination (Ws) often occurs, 
the player needs fewer dice rolls (P), than in a dice game in 
which the desired  combination rarely occurs). 
Therefore, it is    
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and from eq.(16) and from eq. (26) follows         
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(30)  

Equation (30) describes the change of temperature and energy 
necessary to provoke the lengthening of a monotonous sequence 
for one position to s1+1.  
The first mutation event which generates the length s1 can be a hydrogen 
bond with the characteristic temperature t01, and the second mutation event 
which generates the length s1+1 can be a hydrogen bond with the 
characteristic temperature t02. However, in the lengthening of a monotonous 
sequence the same base type is always attached to the end. Therefore, the 
characteristic temperature remains the same at each lengthening of one and 
the same monotonous sequence.

 

Therefore it is easier to calculate only these types of  
changes which always relate to the same monotonous sequences. 
If so 00201 ttt , therefore, when the consecutive tunnel 

proceedings take place either at a G/C -  or an A/T – hydrogen 
bond then 
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(31) 

In the equation’s left side there is an entropy change 
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which relates to the characteristic temperature t0, and an  
entropy change  
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E1 and E2 are the energies relating to the temperatures in each 
case provoking the tunnel process 1 or 2, respectively. 

s1 is the previous length of the monotonous sequence, which has 
been lengthened by one position. s is the total number of 
substituting bases. Equation (31) can be written as 
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(32)       

If there are two tunnel proceedings, where E1 = E2 = E then 

0
1

11
ln

1s

s
kBS

     

(32a)  

6. Interpretation of the equation (32) 

From the equation (32) one finds that the left bracket  
represents the entropy change between two mutations whereas 
the right bracket is a measurement of the DNA – distribution 
order. The equation (32) shows that the smaller the new 
environmental temperature t2 in comparison with t1, the larger 
becomes the distribution order (by enlarging of the monotonous 
sequence length s1). The influence of the energies E1 and E2 is 
determinate by the base rivalry. 
If occurs a temperature decrease from t1 to t2, then any time 
occurs an irreparable mutation of an s1-digit up to an (s1+1)-
digit monotonous sequence. One must take into account that 
this can occur only in tunnel effects (caused by base-rivalry) 
within long spaces of time or in a large number of DNA – 
fragments since the tunnel process is rare.  
In section 5 we have stated a hypothesis concerning the 
relation between the physical and the statistical probability 
in case of base rivalry. From this hypothesis the equation 
(32) is derived. 
It must be noted that the equation (32) has nothing to do with the 
Boltzmann equation of statistical thermodynamics. The reason is that 
the Boltzmann equation explains the entropy in a statistical view 
which expresses the coherence between entropy and probability. By 
way of contrast, the equation (32) is the outcome of the 
hypothetical equation (28).The equation (32) says that (in case of 
base rivalry) tunnel probability and distribution probability are so 
connected as expressed in this equation. Only for the phenomenona 
“tunnelling” and “base rivalry” the equation (32) was formed. 

To prove the equation (32), we have to investigate therefore, 
how the base rivalry as well as the tunnel probability depend 
on temperature, and to what extent the DNA – distribution 
order is relevant to the base rivalry energy. Let us look at 
two succeeding mutation events which are provoked by base 
rivalry [where the tunnel probability depends on temperature 
concerning equation (4)]: 

At a monotonous sequence replication, the energy needed for an 
irreparable hydrogen bond creation and the energy needed for a 
tunnel process are only then reached if the monotonous 
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sequence is long enough to accelerate the competing base 
components to a high energy level. The necessary length of the 
monotonous sequence depends on the viscosity of the braking 
nucleoplasm. The viscosity depends on the temperature, which 
is small at high temperatures; thereby, the competing base 
components obtain high energy after only a few replication 
steps. The viscosity becomes larger at low temperatures; 
thereby the required number of replication steps needed to 
provoke an irreparable lengthening of the monotonous sequence 
increases. 

Therefore, the original length s1, where the monotonous 
sequence lengthening begins, depends on temperature. At higher 
temperatures, s1 is small; at lower temperatures, s1 is large. 
This corresponds with the equation (32): The left bracket 
enlarges if t2 becomes smaller (temperature decrease from 
process 1 to process 2); so the right bracket must become 
smaller, and this is only possible by the enlarging of the 
monotonous sequence length s1. A numerical example for two 
proceedings shows that the equation (32) comes true with the 
supposed values of viscosity, fragment length, original 
temperature t1, and end – temperature t2.  

The object which is to be examined is a residual fragment 
(fig.5) which lived in a former period (surrounding 

temperature t1=313K, cytoplasm viscosity sPa3
1 10285.2 )  

   GGGGGAACGAATACA 
 Replication direction 

Fig.5: Original residual fragment  

The large base rivalry energy (developed through replication 
of the monotonous sequence GGGGG) is calculated by the 
equation    
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(1)  

[1]. With k1=5 and )109055.6.(10285.2 12

1
6

1
3

1 sgcmztocorrespsPa  we 
receive    

T5=14.196 eV  

This base rivalry energy works on the next position 6. 
Considering the ground state energy -13.656 eV the donor of a 
competing base component dGTP receives energy    

E6=-13.656+14.196=0.54 eV 

and so reaching the tunnel energy area. Besides the donor of 
the competing base component receives energy above the quantum 
mechanical energy level n=2 (-3.414eV) so that the binding 
energy of new hydrogen bond G-C enlarges so much that the 



 

18

 
repair mechanism cannot work. So we have the irreparably 
mutated residual fragment fig 6:   

   GGGGGGACGAATACA  
 Replication direction 

Fig.6: Mutated residual fragment  

We expect that this procedure really took place in the former 
period. 

In a later period (surrounding temperature t2=312.5K, 

sPa3
2 10254.3  a second irreparable mutation caused by base 

rivalry takes place. The second base rivalry energy (developed 
through replication of the monotonous sequence GGGGGG) is 
calculated as   

T6=14.196 eV 

with the same formula as above and k2=6 and 

)1085.9.(10254.3 12

1
6

2
3

2 sgcmztocorrespsPa

  

This base rivalry energy works on the next position 7. So the 
same procedure is held not at position 5 but at position 6. We 
expect that this procedure takes place and the donor of a 
competing base component receives also here the energy    

E7=-13.656+14.196=0.54 eV  

Note that E7=E6=E=0.54 eV. 
Finally, from fig.5 and from fig.6 we get (substituting base 
G)   
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Inserting these parameters and t1 = 313K and t2 = 312.5K into 
equation (32a):  

01019.5
66
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ln10863.0

313

1

5.312

1
54.0 64

  

shows a good agreement. Consequently, assume that the equation 
(32) is correct.   
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7. Evolution physics 

It seems to be justified, these calculations to transfer to 
the theory of evolution. In the history of the earth are  
happened many temperature changes. Warm and cold periods 
alternated. Especially the transition from a warm to a cold 
period has created higher forms of species. Normally, we 
explain this phenomenon with the help of theory of Darwinism.  

With the help of equation (32) we also receive another 
explanation: When after a warm period follows a cold period 
then (in a large DNA – lot) will occur irreparable mutations 
because of base rivalry. These mutations will always lead to 
an increase of the order of distribution of DNA. So it is 
conceivable that in early warm periods only plain forms of DNA 
have existed with very short (monotonous) sequences (with a 
length 3).These short (monotonous) sequences must have 
lengthened themselves through temperature decrease considering 
of equation (32) because the cytoplasm viscosity has enlarged 
itself. Thus, with change from warmer down to always colder 
periods (caused by slowly cooling of earth) the order of 
distribution of DNAs has increased itself slowly, so that 
always more longer monotonous sequences have developed 
themselves. It is very remarkable that already small 
temperature changes (within a long period) are a cause of 
irreparable mutations, as one sees in the calculated example 
in section 6.  

So we can realize that the order of DNA – distribution 
increases itself in the long term by long persistent 
temperature decrease correspondingly to the equation (32) and 
therefore, each period forms its own species independently of 
evolution - stress, only by the equation (32).  

8. Mutation physics 

A similar effect of the equation (32) is when viruses will be 
brought in a large amount from a warm area into a cold area 
for a certain period. Look at an animal body in which each 
cell is infected by the same virus. The virus replication 
happens synchronously with the host replication. The residual 
fragment of the virus is a replication unit. We assume that 
each 100th residual fragment of the virus is a sequence as 
shown in fig.6. 

If the animal – body possesses 1012 cells, then 1010 virus – 
residual fragments are alike. These fragments are replicated 
in each 36000th second. Considering eq. (27) we expect an 
irreparable mutation of the second example in section 6 with 
the total probability     

6WP

 

in each of the 1010 virus-residual fragments every 36000 
seconds. Let be P = 36 x 10-12. Using the figure 6 (for 
determination of parameters of formula 21) 
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we get W6 = 0.857. Then will be expected    

36 x 10-12 x 0.857 

mutations in each of the 1010 virus–residual fragments every 
36000 seconds:   
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in each of the 1010 virus–residual fragments. Therefore, in the 
entire animal–body will occur    
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This means that one irreparable virus mutation in the animal 
is expected after every 32.4 hours. 

With a view of the equation (32a) by using the same parameters 
as in section 6 one sees that the equation comes true if the 
warm area has the temperature t1 =313K and the cold area t2 = 
312.5K. The equation (32) becomes also true with t1 =310K and 
t2 = 309.5K.  

In a refrigerator or in a cold-storage house, gradual 
reduction of temperature goes very much faster than in normal 
surroundings, and the production of antibodies is reduced. So 
the irreparably mutated viruses will not be suppressed.  

When so animals which are infected by a virus in a warm area, 
after that are exposed to very low temperatures then this can 
be the cause for suddenly occurring dangerous virus mutations 
in birds or in other animals, and where the transmission to 
human beings cannot be excluded.A lengthening (caused by base 
rivalry) of a monotonous sequence can only happen, when the 
viscosity of the nucleoplasm increases itself. Increased 
viscosity causes a longer path of the competing base 
components until they have reached the necessary energy. A 
larger nucleoplasm viscosity is only possible in a long period 
of temperature decrease or by a cold influence on a large 
virus fragment number (as in the calculated example: Viruses 
of a host remain in a warm area within a long period, and then 
in a cold area within a long period). 

In case of base rivalry, an increase of DNA-distribution order 
is only possible by temperature decrease. The same is 
represented by the equation (32).  

9. Summary 

In small DNA-fragments, in the case of monotonous sequence 
replication there are two processes which can occur:   

1. The change of thermodynamic entropy 

2. The change of DNA-distribution 

In this treatise, the attempt was made to find a connection 
between both processes: At an irreparable mutation (caused by 
base rivalry) there is a mathematical connection between the 
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temperature change and the change of the order of DNA 
distribution: Within a long time period or in a large number 
of DNA-fragments there exists the equation 
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, 

where the left bracket is the change of thermodynamic entropy, 
and the right bracket is a measurement of DNA-distribution 
order (monotonous sequence length s1 enlarged up to s1+1). 
This equation could be useful for the theory of evolution and 
besides for clearing up of virus mutations.  
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